Loughborough University
Browse
- No file added yet -

Propulsive jet aerodynamics and aeroacoustics

Download (7.2 MB)
journal contribution
posted on 2022-03-24, 09:13 authored by Jim McGuirk
Comprehensive understanding of propulsive jet aerodynamics and aeroacoustics is key to engine design for reduced jet noise and infra-red signature in civil and military aerospace, respectively. Illustrated examples are provided of other aerodynamic/aeroacoustic problems involving jet development, including chevron nozzles, increased jet/wing/flap interference (as fan diameter increases), high acoustic environment (and potentially damaging screech) of supersonic jets on carrier decks and the strongly Three-Dimensional (3D) unsteady flow during the in-ground effect operation of Short Take-Off and Vertical Landing (STOVL) aircraft. To date, laboratory/rig test measurements have primarily been used to identify design solutions; increased use of Computational Fluid Dynamics (CFD) would help achieve cost/time reductions, but Reynolds-Average Navier–Stokes (RANS) CFD with statistical turbulence modelling has proven inadequate for such flows. The scenarios described are far removed from flows used to calibrate model constants, and predictive accuracy demands detailed insight into unsteady flow. Large-Eddy Simulation (LES), whilst computationally more demanding, offers a potential solution. Research undertaken to assess LES capability to address the challenges described is reviewed here. This demonstrates that tremendous progress has been made, indicating that LES can provide sufficiently accurate predictions, representing high value for engineering design. A series of validation studies of increasing realism to practical engineering systems is presented to underpin this conclusion. Finally, areas for further work are suggested to support the combined application of RANS and LES that is probably the optimum way forward.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

The Aeronautical Journal

Volume

126

Issue

1295

Pages

2 - 58

Publisher

Cambridge University Press (CUP)

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Cambridge University Press under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2021-06-23

Publication date

2021-11-19

Copyright date

2021

ISSN

0001-9240

eISSN

2059-6464

Language

  • en

Depositor

Prof Jim McGuirk. Deposit date: 23 March 2022

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC