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Abstract

Bimodal urban networks are complex systems operating within multiple constraints. This paper develops
an integrated and systematic framework for the optimization of bimodal urban networks using 3D-MFDs,
considering the complexities of bimodality. With the proposed framework, effective strategies can be designed
for the planning, management, and control of bimodal networks. In particular, strategies to provide public
transport priority on the network level can be holistically evaluated. We apply this methodological framework
to propose, model, and analyze one such strategy to provide public transport priority in the perimeter of
urban networks. The proposed strategy addresses a pressing problem of the existing perimeter control (i.e.
gating) schemes: public transport vehicles will be queuing with the cars in the perimeter and hence blocked
from entering the network. This impairs the service quality of public transport. Adopting our proposed
strategy, the inflows of public transport and cars can be regulated independently (i.e. both inflows are
controllable), the network traffic can be managed more efficiently, and public transport priority can be
provided. The performance of the proposed strategy is evaluated both analytically and with simulations.
Results show that the proposed strategy always performs better than existing perimeter control schemes in
terms of passenger mobility. Most importantly, it differentiates the public transport mode and the car mode,
with much smaller queueing time outside the network for public transport. This can shift the transportation
system to a more sustainable state in the long run. Policy recommendations are provided for a large range
of traffic scenarios.

Keywords: Public transport priority; Multimodal; Urban network; Optimization; 3D-MFD; Pre-signal

1. Introduction

Traffic congestion is an acute and persisting problem in many urban areas. Such congestion causes not
only excessive delays, but also many externalities such as environmental impacts and reduced safety. The
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existence of an invariant and reproducible Macroscopic Fundamental Diagram (MFD) proves there is a
well-defined critical network vehicle density (or accumulation) (Mahmassani et al., 1987; Geroliminis and
Daganzo, 2008; Daganzo and Geroliminis, 2008). At this critical density, the average flow of the network,
which is proportional to the trip completion rate in the network, is optimum (Daganzo, 2007; Mahmassani
et al., 2013). If this critical density is exceeded, the network enters the congested regime, where the average
flow is reduced and vehicles suffer delay. In the worst case, such congestion could eventually lead to a
gridlock. Therefore, it is beneficial to control the network density near the critical value, and it is crucial to
ensure that this value is not substantially exceeded.

Various traffic management and control strategies have been implemented to achieve this goal. These strate-
gies aim to maintain the network density near the critical value, especially during peak periods when the
network is under excessive demand. One example of such strategies is perimeter congestion charging(Lindsey
and Verhoef, 2001; Daganzo and Lehe, 2015; Yang et al., 2019b), implemented for example in London (Santos
and Bhakar, 2006). Another example is perimeter control (which is sometimes called ‘gating’), implemented
for example in Zurich (Ambühl et al., 2018b). This strategy regulates the transfer flows across the border
based on real time feedback on traffic states. Recently, there have been intensive research efforts devoted
to developing various perimeter control strategies, for single region (Keyvan-Ekbatani et al., 2012, 2015),
for multi-region areas (Aboudolas and Geroliminis, 2013; Ramezani et al., 2015; Haddad and Zheng, 2018;
Mohajerpoor et al., 2019; Mariotte and Leclercq, 2019), or even as an alternative to dedicated bus lanes
(Chiabaut et al., 2018). However, while congestion pricing commonly differentiates between modes of trans-
port by charging different prices (Santos and Bhakar, 2006; Wichiensin et al., 2007; Kottenhoff and Freij,
2009; Zheng et al., 2016; Pandey and Boyles, 2018), none of the perimeter control strategies developed so
far have preferential treatment for different modes. In particular, they are not able to regulate the inflows
of public transport vehicles and cars independently, but only the total vehicle flow, i.e. the two inflows are
dependent. This has two major drawbacks.

First, when the two modes cannot be regulated independently, it is implicitly assumed that public transport
(e.g. buses) is distributed among cars. Therefore, during peak periods, when cars are queued outside of
a regulated perimeter, buses will also be restricted from entering the network, as they are queued among
the cars. Evidently, this is not ideal in practice because bus priority cannot be provided, and buses will
not be able to run on schedule. Compared to cars, public transport carries more passengers using less
space. Therefore, in urban areas with limited space and high travel demand, public transport is more
efficient. According to Smeed (1961, 1968); Loder et al. (2017), the greater the travel demand, the greater
the share of public transport users must be to maintain a certain average speed. In the long run, promoting
public transport in urban transportation networks can reduce passenger travel time (Hensher, 2001), relieve
congestion (Adler and van Ommeren, 2016), boost economy (Chatman and Noland, 2011), and eventually
lead to a more sustainable transportation system. Therefore, dedicated lanes are often implemented to
provide public transport priority, so that public transport vehicles can jump the car queues without getting
stuck in congestion. When such priority is provided at the regulated perimeter, it encourages more people to
commute to the city center with public transport (Gonzales and Daganzo, 2012). Indeed, Geroliminis et al.
(2014) suggests that such preferential treatment of public transport in network control strategies should be
a research priority. Unfortunately, so far no existing perimeter control scheme is capable of capturing this.

Second, independent regulation of the two modes can be more efficient in reaching the target accumulations
and achieving the traffic management and control goals. Unfortunately, the complex impact of multimodality
on the network level traffic performance has not received much attention (Geroliminis et al., 2014; Loder et al.,
2017), especially when deriving strategies for perimeter control. Only a few studies looked into perimeter
control strategies for a bimodal network (Ampountolas et al., 2017) using multimodal MFDs. However,
although the network in these models is bimodal, only the total boundary transfer flow is regulated in these
strategies. These are referred to as single-mode strategies in this paper. In these strategies, public transport
is assumed to be homogeneously distributed in the traffic stream in each regulated area (although this
composition can vary with time and regions). Therefore, the composition of the inflow is determined by the
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composition of the incoming demand or queued vehicles in the perimeter, which cannot be directly controlled.
This inflow composition might not be ideal for the traffic management and control goals. Perimeter control
strategies would be more efficient when we can control the composition of the inflow, in addition to its
magnitude. This paper proposes such perimeter control strategies where the inflows of the two modes can
be regulated independently. These are referred to as bimodal strategies in this paper.

To realize a bimodal strategy, appropriate monitoring tools for bimodal networks are essential. Some recent
research has focused on the development of such monitoring tools for bimodal networks. Chiabaut (2015)
extends the concept of the MFD to account for the number of passengers by using the passenger macroscopic
fundamental diagram (p-MFD). Geroliminis et al. (2014) proposes to use the 3D-MFD and the 3D-pMFD to
represent the characteristics of bimodal networks. Some recent literature has already proven its existence with
empirical evidence. For example, Loder et al. (2017) and Ambühl et al. (2018a) provide empirical evidence
for the existence of a 3D-MFD at the urban scale based on data collected from the city of Zurich and London,
respectively. Building on the two papers above, Loder et al. (2019) shows that the empirical 3D-MFD for
both Zurich and London can be fitted using a specific functional form of the 3D-MFD for vehicle flow.
Focusing on the passenger flow, Dakic et al. (2019a) develops an innovative method to estimate a passenger
3D-MFD model, which further demonstrates that the 3D-MFD model is well-defined for passenger flow and
indeed exists empirically. Furthermore, Dakic et al. (2019b) shows that even if passenger occupancy cannot
be dynamically estimated, as long as an appropriate occupancy of the modes is assumed, network control
performance based on the 3D-MFD will not deviate significantly from the theoretical optimum. Hence,
3D-MFDs can be a useful monitoring tool for bimodal networks to develop network control strategies.

Appropriate infrastructure is another major consideration. To regulate the inflows of the two modes inde-
pendently, dedicated lanes must exist around the perimeter of the network. Note that this does not mean
dedicated lanes must exist upstream of all perimeter intersections at all times. Rather, a bimodal strat-
egy can be achieved, as long as all public transport lines can travel on dedicated lanes (continuous or not)
approaching the city center during the regulated period. This means that perimeter intersections without
public transport lines do not need to have dedicated lanes. Also, all dedicated lanes only need to be enforced
during peak periods. The existing road network infrastructure in many cities roughly satisfies such criteria.
For example, in many European cities (such as Zurich), public transport is strongly promoted and almost all
public transport lines access the city center through dedicated lanes. Another example will be many Chinese
cities (such as Beijing), where the newly built infrastructure has typically 4-6 lanes per direction, hence al-
most all major roads accessing the city center have at least one lane dedicated to public transport. In these
cities, a bimodal strategy can be implemented with proper signalization on the perimeter. This includes
using traditional traffic signals, and other more sophisticated strategies such as flexible-sharing strategies
(He et al., 2018; Yang et al., 2018a, 2019a).

This research aims to propose, model, and analyze a bimodal perimeter control strategy to provide public
transport priority in the perimeter of urban networks, which is the first of this kind in literature to the best
of our knowledge. In doing so, we first develop in Section 2 an integrated and systematic framework for the
optimization of bimodal urban networks using 3D-MFDs, considering the complexities of bimodality. Then,
in Section 3, the bimodal perimeter control strategy is mathematically modelled. The complex interactions
between the two modes both within the network and at the network perimeter are incorporated in the model.
The bimodal strategy is then optimized using the methodological framework. Its performance at steady-
states is analytically evaluated in Section 4. We derive the theoretical lower bound for improvement when
the bimodal strategy is properly implemented, compared to the single-mode strategy. Next, in Section 5,
we use macroscopic simulations to evaluate the performance of the bimodal strategy with realistic demands.
The simulation model is based on the city center of Zurich and uses an empirical 3D-MFD for this area.
Lastly, in Section 6, we test the sensitivity of the proposed strategy to variations in the traffic scenarios.
Based on the results, Section 7 offers recommendations to the policy makers.
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2. Methodological framework for bimodal urban networks using 3D-MFDs

Table 1 summarizes the notation for the main variables and parameters in this paper.

A bimodal urban network consists of the public transport mode and the car mode. Denote the modes
with ξ ∈ {b, c}, where b is the public transport mode and c is the car mode. The vehicle accumulation
within the network is nnn = (nb, nc)T , where nξ is the accumulation of the respective mode. We assume the
network is homogeneous, i.e. both public transport vehicles and cars are generally uniformly distributed
in the network. We assume further this homogeneous network has a well-defined 3D-MFD, which relates
the average circulation flow of the two modes to the vehicle accumulation of the two modes in the network
(Geroliminis et al., 2014; Ampountolas et al., 2017). This relationship can be affected by factors such as
spatial configuration, space allocation between modes, public transport routes, etc. Recent empirical studies
(Loder et al., 2017) have shown that such homogeneous bimodal networks do exist in reality, where there is
a low scatter 3D-MFD. A 3D-MFD is a powerful tool not only to monitor a bimodal network (Loder et al.,
2017), but also to optimize its planning, management and control. In this section, we aim to develop a
methodological framework for the optimization of bimodal urban networks using 3D-MFDs.

Such a methodological framework is necessary due to the complexity of bimodal networks. While a single-
mode network is often optimized at the accumulation with the highest flow (i.e. capacity), a bimodal
network is more difficult to evaluate. This is because the performance of the two modes is often coupled
(unless all lanes are dedicated), and the improvement of one mode can come at the expense of the other
mode. Moreover, optimizing traffic flows is often not the only objective of the policy makers. Goals such as
public transport priority are also important considerations, and different policy makers have different goals.
Therefore, when considering a bimodal network, the two modes need to be analyzed with an integrated and
systematic framework which incorporates these complexities and is generally applicable to different policy
makers.

To this aim, denote the circulation flow with qqq = (qb, qc)T , where qξ is the circulation flow of the respective
mode. We represent the accumulation-flow relationship of this bimodal network with a vector function of
the following form in this paper:

qqq(nnn) =

(
qb(nb, nc)
qc(nb, nc)

)
(1)

With this vector function representation, we propose to exploit the mathematical framework of a Pareto
optimization to holistically evaluate bimodal urban networks. Pareto optimization is an important area
of mathematics used for multiple-criteria decision making involving more than one objective function to
be optimized simultaneously. In these cases, optimal decisions often need to be taken in the presence of
trade-offs between two or more conflicting objectives. The optimization of bimodal networks is exactly
such a case, hence Pareto optimization provides an applicable framework. In Eq.1, qb(nnn) and qc(nnn) can be
considered as two objective functions of the optimization problem, where nnn belongs to the decision space N .
This decision space is bounded. For example, every network has a limited storing capability. In particular,
the accumulation of cars, when public transport vehicles are not present, cannot exceed the jam density.
Assuming storing each additional public transport vehicle comes at the expense of a fixed number of cars,
N is a polygon with linear constraints. qqq is the objective vector and belongs to the objective space Q. This
objective space is also bounded, for example by the capacity of the network.

Evidently, we do not expect an accumulation nnn to optimize vehicle flows for both modes. Therefore, we
exploit the concept of Pareto optimal. Mathematically, Pareto optimal solutions are those that cannot be
improved in any of the objectives without degrading at least one of the other objectives. Similarly, we can
define the Pareto accumulations for a bimodal network as those where the resulting circulation flow of one
mode cannot be improved without reducing that of the other. The set of Pareto accumulations is then the
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Table 1: List of important variables

Network level parameters:
ξ ∈ {b, c} b is the public transport mode, c is the car mode
nnn = (nb, nc)T vehicle accumulation within the network [veh] ∗

N decision space: the set of all feasible vehicle accumulations (nb, nc)T

ñnn = (ñb, ñc)T target vehicle accumulation at steady-state for the network [veh]
nnnout = (nbout, n

c
out)

T The accumulation of vehicles queueing in the perimeter to enter the network, i.e. the
queue at perimeter [veh]

qqq = (qb, qc)T average circulating vehicle flow within the network [veh/h]
Q objective space: the set of all feasible vehicle flows (qb, qc)T

G(·) Pareto frontier of the bimodal network
wξ weights of respective mode for a linear objective
p average network passenger flow [pax/h]
hξ passenger occupancy of the respective mode [pax/veh]
dddext = (dbext, d

c
ext)

T demand from outside the network with destinations inside the network [veh/h]
r car to public transport ratio of the incoming demand
dddint = (dbint, d

c
int)

T demand from within the network with destinations inside or outside the network, i.e.
internal demand [veh/h]

µµµ = (µb, µc)T inflow into the network [veh/h]
µ total vehicle inflow into the network [PCE/h]
µ̃µµ = (µ̃b, µ̃c)T steady-state inflow at target vehicle accumulation into the network [veh/h]
µ̃ total vehicle inflow into the network at steady-state [PCE/h]
ρ passenger car equivalence (PCE) factor for a unit of public transport vehicle
θθθ = (θb, θc)T composition of the inflow traffic (ρθb + θc = 1)
ggg = (gb, gc)T trip completion rate within the network [veh/h]
ηξ proportional factor for trip completion rate of the respective mode
Q upper bound for the total inflow into the network (network perimeter capacity)

[PCE/h]
Qξ upper bound for the total inflow on dedicated lanes of respective mode into the net-

work (network perimeter car/public transport capacity) [PCE/h]
Qf upper bound for the total inflow into the perimeter intersections with flexible-sharing

strategies (network perimeter shared capacity) [PCE/h]

Intersection level parameters:
m ∈M intersections on the perimeter
i ∈ I, I ⊆M intersections on the perimeter with dedicated public transport lanes
j ∈ J , J ⊆M intersections on the perimeter with flexible-sharing strategies
l ∈ L, L ⊆M intersections on the perimeter with mixed lanes (and no public transport lines going

into the network)
µµµm = (µbm, µ

c
m) inflow at intersection m [veh]

µm total inflow at intersection m [PCE/h]
Qm upper bound for total inflow at intersection m [PCE/h]
Qξm upper bound for inflow of respective mode at intersection m [PCE/h]
βj linear reduction factor for capacity at intersection j when a flexible-sharing strategy

is implemented

∗ In this paper, (·)T represents the transpose of a column vector.

5



Pareto frontier of the bimodal network.

A bimodal network can then be evaluated by determining its Pareto frontier. Since there are infinite Pareto
accumulations for any bimodal network, the optimization problem needs to be scalarized to offer a target
accumulation for planning, management, and control purposes. Mathematically, scalarization means formu-
lating a single-objective optimization problem such that optimal solutions to the single-objective optimization
problem are also Pareto optimal solutions. We propose a linear scalarization approach by giving positive
weights to qb and qc. Since the appropriate weights can be determined by the policy makers depending on
their priorities, such a methodology is generally applicable.

Definition 1. A linear objective of a bimodal network is one of the form max
nnn∈N

wbqb(nnn) +wcqc(nnn), where wb

and wc are positive weights.

An optimal target accumulation for a bimodal network can then be calculated by optimizing its linear
objective defined by the policy maker. For example, following the treatment in previous studies (Geroliminis
et al., 2014), the average passenger flow p can be approximated with p(nnn) = hbqb(nb, nc) + hcqc(nb, nc),
where hξ is the average passenger occupancy of the respective mode. This can be used as a linear objective
of the bimodal network, which is sometimes also called the 3D-pMFD. This formulation assumes that the
passenger occupancies have small variations over a reasonable time period (e.g. 30 minutes), and there is no
instantaneous mode shift due to control strategies. In this paper, we will illustrate the general methodology
using this weighting as an example. However, it should be noted that the methodology still applies with any
specified weighting factors tailored to the goals of the policy makers.

We assume that the Pareto frontier is convex. This assumption is consistent with the findings from empirical
studies (Loder et al., 2017) and simulations (Geroliminis et al., 2014; Ortigosa et al., 2017; Dakic and
Menendez, 2018). For example, the empirical 3D-MFD fitted with data collected from the city center of
Zurich (Loder et al., 2017) can be represented by Eq.2.

qqq(nnn) =

(
0.3769nb − 0.00002519nbnc − 0.0005679(nb)2

0.7162nc − 0.004268nbnc − 0.0001893(nc)2

)
(2)

qb(nnn) and qc(nnn) are plotted in Figure 1a and b, respectively, for the bimodal network optimization prob-
lem. The shape of qb(nnn) and qc(nnn) is similar to that derived from previous simulation studies (Geroliminis
et al., 2014; Ortigosa et al., 2017). Therefore, it is reasonable to assume that its qualitative properties are
reproducible in a general 3D-MFD. The objective space Q for the city center of Zurich and the Pareto fron-
tier are plotted in Figure 1c. Note that the Pareto frontier is convex. Since the Pareto frontier calculated
from the 3D-MFD of previous simulation studies is also convex, it is reasonable to assume that a general
Pareto frontier is convex. Figure 1d presents the linear objective using a 3D-pMFD, assuming an average
passenger occupancy hb = 55pax/veh and hc = 1.2pax/veh. Note that the optimal solution occurs at some
non-zero public transport accumulation, which is verified to be a Pareto accumulation. This is because the
higher passenger occupancy of public transport makes it a more efficient mode than the car mode from a
passenger perspective. Additionally, observe that the optimum car accumulation is lower when the network
has a higher public transport accumulation. Therefore, adding public transport to the network increases the
network efficiency by using the limited road space to move more people, but it also makes the network more
prone to congestion at a lower car demand.

Note that Eq.2 is only to illustrate the form of the 3D-MFD. The analytical modeling and results presented
in Sections 2 and Section 3 do not depend on this specific functional form, but instead use the general form
of the 3D-MFD as shown in Eq.1. We will come back to Eq.2 in Section 5 when we use simulations to test
the analytical results.
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Figure 1: The city center of Zurich: a. Public transport flow vs. accumulations. b. Car flow vs. accumulations. c.
The objective space and Pareto frontier. d. Linear objective using 3D-pMFD assuming an average passenger occupancy
hb = 55pax/veh and hc = 1.2pax/veh. The identified dot is the optimal solution.

3. Bimodal perimeter control strategy

With the proposed methodological framework for bimodal networks, effective strategies can be designed to
meet the planning, management, and control goals of policy makers. In particular, strategies to provide
public transport priority on the network level can be evaluated in an integrated and systematic manner
incorporating the complexities of bimodal networks. In the rest of the paper, we propose, model, and
analyze one such strategy, a bimodal perimeter control strategy, as an application of our methodological
framework. To the authors’ best knowledge, this is the first perimeter control strategy which provides public
transport priority in the perimeter the urban networks. In this section, we will develop a mathematical
model of this bimodal strategy.

We consider the problem of commute into a bimodal urban network during the peak period. During this
period, there is often some vehicles queueing in the perimeter to enter the network. Denote this with
nnnout = (nbout, n

c
out)

T , where nξout is the queue at the perimeter of the respective mode. We assume that
before the morning peak period, the accumulation nξ within the network is small, and the queue at perimeter
nξout is zero. During the peak period, there is a strong demand dddext = (dbext, d

c
ext)

T going into the network,

where dξext is this external demand of the respective mode. Evidently, there is also some internal demand

dddint = (dbint, d
c
int)

T originated from within the network, where dξint is this internal demand of the respective
mode. During the morning peak periods, it is reasonable to assume the network operation is dominantly
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influenced by the incoming demand dξext (i.e. dξext is much larger than dξint). As reviewed in the introduction,
previous works on perimeter control have shown that, it is beneficial to the system to limit the inflow and
leave some vehicles queued outside the network, when the network is subject to a very large incoming demand.
This helps to maintain the network flow near the maximum value of the MFD. In contrast, if the inflow is
not controlled at the perimeter, the traffic within the network can quickly become congested. Therefore,
the total delay incurred in the system (considering both outside of and within the network) during the peak
period can be larger without perimeter control.

As elaborated in the introduction, none of the existing perimeter control strategies developed so far have
preferential treatment for different modes. In particular, they are not able to regulate the inflows of public
transport vehicles and cars independently, but only the total vehicle flow, i.e. the two inflows are dependent.
We propose a bimodal perimeter control strategy for bimodal networks to provide public transport priority
in the network perimeter. In the bimodal strategy, the inflows of public transport vehicles and cars can be
regulated independently (i.e. both inflows are controllable). Denote the inflow into the network with a vector
µµµ = (µb, µc)T , where µξ is the inflow of the respective mode. If the passenger car equivalence factor (PCE)
for a unit of public transport vehicle is ρ, the total network inflow in PCE/h is µ = ρµb+µc. Mathematically,
all previous models on perimeter control strategies only control this total inflow µ ∈ R without considering
different modes. In contrast, our control parameter is a two dimensional vector µµµ ∈ R1×2 which controls the
two modes independently.

The dynamics of the bimodal network where the inflows of both modes can be regulated independently (i.e.
applying a bimodal strategy) can be described by the following ordinary differential equation:

ṅnn(t) = dddint(t)− ggg(nnn(t)) +µµµ(t) (3)

nnn = (nb, nc)T is the network accumulation. ṅnn(t) is the change in network accumulation over time. dddint =
(dbint, d

c
int)

T is the traffic generation from within the network, which is considered as a control disturbance in
our model. ggg = (gb, gc)T is the trip completion rate within the network, where gξ is the rate of the respective
mode. Following Geroliminis and Daganzo (2008), gξ is assumed to be proportional to qξ with a factor ηξ

for each mode, i.e. gξ = ηξqξ. This factor is a property of the network and can be calculated empirically or
with simulations. µµµ = (µb, µc)T is the inflow into the network, which is the control parameter in our model.
Note that all variables in Eq.3 are time-dependent two-dimensional vectors.

In contrast, if only the total inflow can be controlled for the bimodal network (i.e. single-mode control), the
control parameter µµµ is subject to the additional constraint:

µµµ(t) = µ(t)θθθ(t) (4)

θθθ = (θb, θc)T describes the composition of the inflow traffic, i,e, µc/µb = θc/θb. Denote this ratio with r.
One can verify that ρθb + θc = 1. Note that the control parameter in this case is only the total inflow µ,
hence there is one fewer degree of freedom in the solution. The mode composition θθθ is determined by the
composition of the incoming demand or queued vehicles in the perimeter, hence it cannot be controlled and
is an input variable. Since single-mode strategies need to satisfy this additional constraint, we expect to find
more efficient control solutions by regulating the inflows of the two modes independently with the bimodal
strategy.

Perimeter control strategies usually aim to maintain the network in a steady-state at a target accumulation.
However, this steady-state can only be realized if there is enough incoming demand arriving at the perimeter.
For the single-mode strategy, this is usually not a problem, because dcext is high enough during the peak
period, otherwise perimeter control would not be necessary in the first place. For the bimodal strategy, this
leads to a potential problem. In many urban areas, there are fewer public transport vehicles in the network

8



than the optimal amount. Although theoretically, the public transport agency can increase the public
transport frequency, in practice this is often not possible due to the operation costs, the fixed schedules,
etc. Therefore, it is very likely that the calculated bus inflow cannot be realized due to inadequate incoming
public transport dbext. Moreover, recall from Figure 1b that when the system targets a higher public transport
accumulation, the corresponding optimal car accumulation will be lower. Therefore, if a very high public
transport accumulation is unattainable, the perimeter control strategy will let in fewer cars than the actual
optimum amount corresponding to the attained public transport accumulation. This reduces the efficiency of
the perimeter control. To completely resolve this problem, the real time incoming public transport demand
dbext(t) can be imposed as a time-varying constraint. However, in practice, accurate real time information
is often not available, and only a planned public transport schedule might be available. Hence, to reduce
the data requirements and the computational complexity, we propose to solve this problem heuristically by
treating the incoming public transport demand dbext(t) as a step-function constraint, i.e. it is assumed to
be constant for some period (e.g. 30 minutes). This is a reasonable assumption because although there are
inevitable deviations from the planned schedule, for example due to bus bunching, the average headway over
a long enough period of time should be reasonably close to the service plan. Overall, the optimal control
solution at steady-state needs to satisfy the constraint 000 ≤ µµµ ≤ dddext.

Adopting our methodological framework, the target accumulation at steady-state for a general linear objec-

tive, denoted with ñnn = (ñb, ñc)T , can be solved from the optimization problem:

max
nnn

p(nnn) = wbqb(nnn) + wcqc(nnn) (5)

subject to

{
dddint − ggg +µµµ = 0

000 ≤ µµµ ≤ dddext
(6)

Another important consideration for the bimodal perimeter strategy is the infrastructure at the perimeter
implemented to provide bus priority. For the single-mode strategy, it is only required that the car inflows at
all perimeter intersections must be regulated, for example with traffic signals. For the bimodal strategy, to
independently regulate the inflows of the two modes, we assume all public transport vehicles can jump the car
queues upstream of the perimeter intersections during the peak period, for example by entering the controlled
area through dedicated lanes. We consider this a fair assumption. On one hand, such infrastructure does
exist in some cities around the world, as described in the introduction. On the other hand, when considering
any perimeter control strategies for a bimodal network, it is arguable whether the strategy can be approved
in practice at all, if such infrastructure does not already exist. If public transport is queued outside of the
network among the cars due to lack of proper infrastructure, the perimeter control strategy might meet with
strong opposition from involved stakeholders such as public transport users and agencies, even if the traffic
operation within the network might be improved for both modes.

An intuitive choice to realize independent regulation of the two modes is to implement dedicated lanes
coming in up to the perimeter intersections and apply separate signals to public transport and cars. This,
however, comes with the expense of reduced capacities at these intersections. Although the capacities of the
perimeter intersections do not impose constraints to the network inflows at steady states (otherwise perimeter
control strategies would not be necessary), it can impose constraints during transient periods. This can harm
the overall traffic performance, because cars might not be discharged fast enough in the perimeter during
transient periods to reach the target accumulation for optimal operation inside the network. Meanwhile,
cars might be unnecessarily queued outside of the network due to limited discharge capacity. Therefore, the
traffic operation of the entire network, both inside and outside of the perimeter, can be harmed.

To overcome this problem, a class of public transport priority strategies called flexible-sharing strategies

9



has been recently analyzed by He et al. (2018). These strategies share road space capacity in a flexible
manner at a given element (e.g. the intersection) to move public transport vehicles in front of the car
queues without continuously banning cars from using one full lane. Such flexible space allocation combines
the advantages of mixed lanes (the element’s capacity can be fully utilized if public transport vehicle flow
is low) and dedicated lanes (public transport receives priority). This is especially relevant to the bimodal
perimeter control strategy, where the inflow of each mode needs to be regulated independently while the
perimeter capacity can be fully utilized when necessary. A specific example of flexible-sharing strategies, the
pre-signals, will be illustrated and discussed in Section 5.

Without looking at specific infrastructure configurations, we model how different infrastructure types (i.e.
mixed lanes, dedicated lanes, and flexible sharing strategies) in the network perimeter will result in different
constraints on the inflow during transient periods. The inflow capacity of the network perimeter depends
on many factors. Some of these factors, e.g. intersection configuration and capacity of the links, are fixed
for a given network. These factors determine the upper bound Q for the total inflow µ into the network.
However, the actual discharge capacity of the network, which depends on factors such as the green time ratio
and the percentage of through-going traffic, can be smaller than this upper bound. Since perimeter control
strategies regulate the perimeter inflows by controlling the green time ratio, the actual discharge capacity
changes over time. When we refer to the capacity of the network perimeter in the rest of the paper, we are
referring to the upper bound Q for the given network, rather than the instantaneous discharge capacity.

The capacity of the network perimeter can be reserved for each mode with dedicated lanes, or shared by
the two modes with mixed lanes and flexible-sharing strategies. This determines constraints to the network
inflows. Index the intersections on the perimeter with m ∈ M . Further index those with dedicated public
transport lanes for the incoming approach with i, i ∈ I, I ⊆M , and those with flexible-sharing strategies for
the incoming approach with j, j ∈ J , J ⊆ M . We assume for perimeter intersections with incoming public
transport lines, either dedicated public transport lanes or flexible-sharing strategies are implemented on the
incoming approach. Index the perimeter intersections without incoming public transport lines, with l, l ∈ L,
L ⊆M . Overall, the intersection sets I, J , and L are mutually exclusive and collectively exhaustive.

The aggregate perimeter constraints on the total inflow is determined by the individual constraints on the
inflow at each individual intersection. Denote the inflow at intersection m with µµµm = (µbm, µ

c
m), where µξm is

the inflow for the respective mode. We have µm = ρµbm + µcm and µξ =
∑
m
µξm. Denote the upper bound of

µm, µbm, and µcm at each individual intersection respectively with Qm, Qbm, and Qcm. We have Qi = Qbi +Qci ,
Qj = Qcj , and Ql = Qcl . Further denote the upper bounds of

∑
m∈I∪L

µcm,
∑
m∈I

µbm, and
∑
m∈J

µm respectively

with Qc, Qb, and Qf , and refer to them in the rest of the paper respectively as the network perimeter car
capacity, the network perimeter public transport capacity, and the network perimeter shared capacity. We
have,

Q = Qb +Qc +Qf (7)

Note that we do not discuss in this paper how to calculate µξm, i.e. how the total inflow µξ should be
distributed among the individual perimeter intersections. Evidently, this depends on the specific network
considered and the traffic management and control goals. Some of the physical parameters to consider
include the spatial distribution of the incoming demand over the network perimeter, the capacities of each
perimeter intersection, and the link storage capacity upstream of each perimeter intersection. Optimization
techniques such as the model predictive approach proposed in Yang et al. (2018b) can be used to calculate
µξm for a given network. This paper models and analyzes the proposed bimodal strategy at a aggregate level.
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4. Performance of the bimodal perimeter control strategy at steady-states

In this section, we analytically evaluate the performance of a properly implemented bimodal perimeter
control strategy at steady-states using the methodological framework proposed in Section 2 and the strategy
model developed in Section 3. In particular, we compare its performance to the case when a single-mode
strategy is properly implemented. The purpose is to analyze the improvement in passenger flow (Eq.5), and
derive the theoretical lower bound for improvement.

We denote the Pareto frontier of the network with a general convex function G(·), where we have qc ≤ G(qb).
A properly implemented strategy should optimize the network operation at steady-states. In our case, we
aim to optimize the average passenger flow as a linear objective. Therefore, we aim to solve the optimization
problem presented in Eq.5 and 6, choosing the passenger occupancies as weights for the linear objective.
This is not easy, because the 3D-MFD (Eq. 1) is non-linear, as is the case in Eq. 2. Therefore, we wish
to eliminate the non-linear terms, i.e. qqq and ggg, from Eq.5 and Eq.6. Notice that qξ = gξ/ηξ, ξ ∈ {b, c}.
From Eq.6, we have ggg = dddint + µµµ satisfying gc/ηc ≤ G(gb/ηb). Accordingly, we can replace ggg and qqq in the
optimization problem, and rewrite Eq.5 and 6 as an optimization for a function P of decision variable µµµ.

max
µµµ

P (µµµ) = hbµb/ηb + hcµc/ηc (8)

subject to

{
(µc + dcint)/η

c ≤ G((µb + dbint)/η
b)

000 ≤ µµµ ≤ dddext
(9)

For the single-mode strategy, recall from Eq.4 that the car to public transport ratio θc/θb of the inflow traffic
cannot be controlled. This imposes an additional constraint on µµµ for the target steady-state to be realizable,
i.e.

µc = rµb (10)

(𝜋1
𝑏, 𝜋1

𝑐)

(𝜋2
𝑏, 𝜋2

𝑐)

𝜇𝑏

𝜇𝑐

0

(𝜋1
𝑏, 𝜋1

𝑐)

(𝜋2
𝑏, 𝜋2

𝑐)

𝜇𝑏

𝜇𝑐

0

𝑑ex𝑡
𝑐

𝑑ext
𝑏

(b) Case II: 𝜋1
𝑏 ≥ 𝜋2

𝑏(a) Case I: 𝜋1
𝑏 < 𝜋2

𝑏

(𝜇𝑐+𝑑int
𝑐 )/𝜂𝑐 = 𝒢( 𝜇𝑏 + 𝑑int

𝑏 /𝜂𝑏)

(𝜋2
𝑏, 𝜋1

𝑐)
𝑑ex𝑡
𝑐

𝑑ext
𝑏

(𝜇𝑐+𝑑int
𝑐 )/𝜂𝑐 = 𝒢( 𝜇𝑏 + 𝑑int

𝑏 /𝜂𝑏)

Figure 2: Illustration of the feasible regions for both strategies. The feasible region for the single-mode strategy is the red
bold line segment with slope r, whereas the feasible region for the bimodal strategy is the light gray region.

Therefore the constraints for µµµ for both strategies can be illustrated as the feasible regions on the µb-µc plane
in Figure 2. We wish to evaluate the performance of properly implemented strategies by optimizing each
strategy based on its respective feasible region. There are many different cases how their feasible regions can
be, depending on the demands and the network characteristic (i.e. the Pareto frontier).
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Denote (πb1, π
c
1) as the intersection between line µc = dcext and curve (µc + dcint)/η

c = G((µb + dbint)/η
b),

and (πb2, π
c
2) as the intersection between line µb = dbext and curve (µc + dcint)/η

c = G((µb + dbint)/η
b). Here

it holds naturally that πc1 = dcext and πb2 = dbext. Note that in the case where line µc = dcext does not
intersect with curve (µc + dcint)/η

c = G((µb + dbint)/η
b), denote (πb1, π

c
1) = (0,G(dbint/η

b) − dcint); and in
the case where line µb = dbext does not intersect with curve (µc + dcint)/η

c ≤ G((µb + dbint)/η
b), denote

(πb2, π
c
2) = (G−1(dcint/η

c)− dbint/ηb, 0), where G−1 represents the inverse function of G.

Figure 2 shows two cases: πb1 < πb2 (Case I, illustrated in Figure 2a) and πb1 ≥ πb2 (Case II, illustrated in
Figure 2b). For Case I, there are three subcases based on the value of the car to public transport ratio
µc/µb = r, i.e. Case I.a (r > πc1/π

b
1), Case I.b (πc2/π

b
2 < r ≤ πc1/π

b
1) and Case I.c (r ≤ πc2/π

b
2). These three

cases correspond to three different feasible regions for the single-mode strategy. The boundaries between the
feasible regions are shown in the dotted lines in Figure 2a). Similarly, for Case II, we have two subcases:
Case II.a (r > πc1/π

b
2) and Case II.b (r ≤ πc1/πb2).

With the definition of all cases, the results for this section can be summarized in Theorem 1, followed by
one numerical example and the proof.

Theorem 1. 1) The theoretical lower bound for improvement in average passenger flow by properly imple-
menting the bimodal strategy compared to the single-mode strategy is summarized in Table 2.

Table 2: Improvement in the average passenger flow by properly implementing the bimodal strategy compared to the
single-mode strategy (pax/h).

hbηc

hcηb
> −π

c
1 − πc2
πb1 − πb2

hbηc

hcηb
≤ −π

c
1 − πc2
πb1 − πb2

Case I:
πb1 < πb2

Case I.a:
r > πc1/π

b
1

hb(πb2 − πc1/r)
ηb

+
hc(πc2 − πc1)

ηc
hc(rπb1 − πc1)

rηc

Case I.b:
πc2/π

b
2 < r ≤ πc1/πb1

hb(πb2 − πb1)/ηb + hc(πc2 − πc1)/ηc

(rπb2 − rπb1 − πc2 + πc1)/(−πc2 + rπb2)

hb(πb1 − πb2)/ηb + hc(πc1 − πc2)/ηc

(rπb2 − rπb1 − πc2 + πc1)/(πc1 − rπb1)

Case I.c:
r ≤ πc2/πb2

hc(πc2 − rπb2)

ηc
hb(πb1 − πb2)

ηb
+
hc(πc1 − rπb2)

ηc

Case II:
πb1 ≥ πb2

Case II.a:
r > πc1/π

b
2

hb(πb2 − πc1/r)
ηb

Case II.b:
r ≤ πc1/πb2

hc(πc1 − rπb2)

ηc

2) Properly implementing the bimodal strategy can improve the passenger mobility of the network at steady-
states.

Remark. To illustrate typical values obtained using the theoretical formulas given in Table 3, we calculate
some numerical values assuming a typical incoming public transport demand of 150veh/h and passenger
occupancy of 50pax/veh for the city center of Zurich, with empirical 3D-MFD given by Eq.2 and depicted
in Fig. 1. A range of incoming car demands and car to public transport ratios are tested. The infinite ratio
represents the cases without any incoming public transport vehicles. The results are summarized in Table
3. This shows that properly implementing the bimodal strategy often results in sustainable improvement in
the passenger mobility of the network at steady-states.

Proof for Theorem 1. 1) Note that the only difference between Eq.5 and Eq.8 is an additive constant term,
therefore the improvement in the average passenger flow by adopting the bimodal strategy can be represented
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Table 3: Typical values for improvement (in pax/h and percentage) by properly implementing the bimodal strategy
compared to the single-mode strategy according to theoretical formulas given in Table 3.

r = 50 r = 150 r = 500 r =∞
dcext = 10000 veh/hr 120 (15%) 167 (21%) 260 (33%) 300 (38%)
dcext = 15000 veh/hr 257 (28%) 28 (3%) 137 (15%) 197 (22%)
dcext = 20000 veh/hr 257 (28%) 38 (4%) 116 (13%) 105 (11%)

as

∆p = P ∗bi − P ∗single (11)

where P ∗bi and P ∗single represent the optimal objective value Eq.8 for bimodal and single-mode control, re-
spectively.

Since the Pareto frontier G(·) is convex, and the objective function P (µµµ) is linear, the optimal steady-state
solution for the bimodal strategy lies in one of the vertices of the feasible region. Further notice that the

objective function P (µµµ) has a negative slope, hence in Case I is (πb2, π
c
2) if

hbηc

hcηb
> −π

c
1 − πc2
πb1 − πb2

, and (πb1, π
c
1) if

hbηc

hcηb
≤ −π

c
1 − πc2
πb1 − πb2

. The optimal steady-state solution for the bimodal strategy in Case II is always (πb2, π
c
1).

An illustration example for Case I if
hbηc

hcηb
> −π

c
1 − πc2
πb1 − πb2

is shown in Figure 3.
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Figure 3: Illustration of the feasible regions and objective function for both strategies. The feasible region for the single-mode
strategy is the red bold line segment, whereas the feasible region for the bimodal strategy is the gray region. The objective

function is represented by the dotted line, with a slope of −h
cηb

hbηc
.

For presentation simplicity, we focus on the Case I in the case
hbηc

hcηb
> −π

c
1 − πc2
πb1 − πb2

.

In Case I, the objective function is always optimized at (πb2, π
c
2) for the bimodal strategy,

P ∗bi = P (πb2, π
c
2) =

hbπb2
ηb

+
hcπc2
ηc

(12)

Next, we calculate the optimal solution for the single-mode strategy in the three subcases. The objective
function and the feasible regions for the three cases are shown in Figure 3. Notice that the optimal solution
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for the single-mode strategy is always the non-zero vertex of the line segment representing the feasible region
of the single-mode strategy, since the objective values for the single-mode strategy is always non-negative
across the entire feasible region. The calculation of this vertex differs in the three subcases.

For Case I.a, i.e. r > πc1/π
b
1, the objective function is optimized at the non-zero vertex (πc1/r, π

c
1) for the

single-mode strategy,

P ∗single = P (πc1/r, π
c
1) =

hbπc1
rηb

+
hcπc1
ηc

(13)

Hence, the improvement is

∆p = P ∗bi − P ∗single =
hb(πb2 − πc1/r)

ηb
+
hc(πc2 − πc1)

ηc
(14)

For Case I.b, i.e. πc2/π
b
2 < r ≤ πc1/π

b
1, the objective function is optimized at the non-zero vertex, i.e. the

intersection between the curve (µc + dcint)/η
c ≤ G((µb + dbint)/η

b) and µc = rµb, denoted as (µb∗, µc∗), for
the single-mode strategy. Further denote the intersection between the line µc = rµb and the line connecting
(πb1, π

c
1) and (πb2, π

c
2) as (πb0, π

c
0), where

πb0 =
πc1π

b
2 − πc2πb1

rπb2 − rπb1 − πc2 + πc1
, πc0 = r

πc1π
b
2 − πc2πb1

rπb2 − rπb1 − πc2 + πc1
(15)

As G(·) is convex, we have

P ∗single = P (µb∗, µc∗) =
hbµb∗

ηb
+
hcµc∗

ηc
≤ P (πb0, π

c
0) =

hbπb0
ηb

+
hcπc0
ηc

(16)

Hence, the improvement is

∆p = P ∗bi − P ∗single ≥
hb(πb2 − πb1)/ηb + hc(πc2 − πc1)/ηc

(rπb2 − rπb1 − πc2 + πc1)/(−πc2 + rπb2)
(17)

For Case I.c, i.e. r ≤ πc2/πb2, the objective function is optimized at (πb2, rπ
b
2) for the single-mode strategy,

P ∗single = P (πb2, rπ
b
2) =

hbπb2
ηb

+
hcrπb2
ηc

(18)

Hence, the improvement is

∆p = P ∗bi − P ∗single =
hc(πc2 − rπb2)

ηc
(19)

This completes the proof for the Case I in the case
hbηc

hcηb
> −π

c
1 − πc2
πb1 − πb2

. The proof for the other cases is similar

and is omitted here.

2) Readers can easily validate that the theoretical lower bound given in Table 2 is positive, except when r
is some threshold values for which cases the lower bound is 0.
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5. Performance of the bimodal perimeter control strategy with realistic demands

The theoretical results in Section 4 demonstrate that the bimodal perimeter control strategy can substan-
tially benefit network passenger mobility at steady-states. However, traffic demands vary with time in reality.
Hence, the network cannot always be maintained at steady-states. Moreover, the empirical MFD and and the
measured accumulations might not be accurate. Therefore, a simulation approach is advantageous because
it can emulate realistic demand patterns and take into account system stochasticity and uncertainty. In this
section, we conduct macroscopic simulations coded in Python to test the performance of the bimodal perime-
ter control strategy with realistic demands. We test the bimodal strategy using two different infrastructure
configurations at the network perimeter, and compare the results to the case with a single-mode strategy.
The infrastructure configurations tested in the simulations are described in Section 5.1. The simulation
environment is described in Section 5.2. The results are presented and discussed in Section 5.3.

5.1. Infrastructure configurations

Recall that all public transport lines travel on dedicated lanes on links approaching the perimeter, however,
these dedicated lanes may be discontinued upstream of the intersection. This would affect how perimeter
capacity is shared across the modes as considered in Eq.7. Hence, in the simulations, this capacity share
affects the constraints on the vehicle inflow into the network during transient periods. Therefore, while the
theoretical calculation considers all infrastructure configurations, for simulation studies each infrastructure
configuration needs to be analyzed on a case-by-case basis. We test three different infrastructure configu-
rations in the simulations. They are respectively described below. The more general cases are also briefly
discussed.

Strategy 1: Single-mode strategy with mixed lanes

In this case, for each intersection m ∈ M with mixed incoming traffic, we have µm = ρµbm + µcm ≤ Qm.
Summing over all intersections, we have

∑
m
µm =

∑
m
ρµbm +

∑
m
µcm ≤

∑
m
Qm, i.e. µ = ρµb + µc ≤ Q. During

transient periods, if the calculated total inflow exceeds Q in Eq.7, evidently the adjusted inflow should be
µ = Q to realize it to the maximal extent.

Strategy 2: Bimodal strategy with dedicated PT lanes immediately upstream of all perimeter
intersections with PT lines (M = I ∪ L)

In this case, for each intersection m ∈ I ∪L with dedicated lanes (note that this includes intersections m ∈ I
with dedicated lanes for both modes, and intersections m ∈ L with only car lanes), we have µbm ≤ Qbm/ρ and
µcm ≤ Qcm. Summing over all intersections, we have

∑
m∈I∪L

µbm ≤
∑

m∈I∪L
Qbm/ρ and

∑
m∈I∪L

µcm ≤
∑

m∈I∪L
Qcm,

i.e. µb ≤ Qb/ρ and µc ≤ Qc. During transient periods, if the calculated public transport vehicle inflow
exceeds Qb/ρ or the calculated car inflow exceeds Qc, evidently the adjusted inflows should respectively be
µb = Qb/ρ and µc = Qc to realize them to the maximal extent.

Strategy 3: Bimodal strategy with flexible-sharing strategies immediately upstream of all
perimeter intersections with PT lines (M = J ∪ L)

In this case, we assume pre-signals (Guler and Menendez, 2014a,b; He et al., 2016) are implemented. The
pre-signal terminates the dedicated PT lane immediately upstream of the intersection and stops vehicles at
this location. Note that although such implementation occupies some road space immediately upstream of
the main signal, this space is insignificant compared to the actual queue length upstream of the perimeter
intersection when a perimeter control strategy is implemented. Since the inflows of both modes need to
be controllable, a pre-signal for each mode is needed. The pre-signal on the PT lane controls the public
transport vehicle inflow, while the pre-signal on the car lane controls the car inflow. The idea is for cars to use
all the lanes at the main signal to discharge when no bus is present, so that the capacity of the intersection is
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shared in a flexible manner. In particular, the capacity at the main signal will not be wasted when the inflow
of public transport vehicles is very small while a high inflow of cars is necessary for the optimal network
operation. Examples of signal timing settings to optimally use the capacity of the intersection can be found
in Guler and Menendez (2014a,b); He et al. (2016); Yang et al. (2016); Li et al. (2013). In these papers
the traffic situation of the roads upstream of the pre-signals (as compared to the dedicated lane case) are
studied in detail where the speeds, travel time, and infrastructure occupancy are analyzed and compared in
simulation studies both at steady states and with stochastic demands.

In reality, in most cases only the car inflow will be regulated by the pre-signal, and the pre-signal on the PT
lane will be constantly green. However, the pre-signal on the PT lane remains necessary for extreme cases,
such as when the network is in a gridlock state and neither additional cars nor PT vehicles should be allowed
into the network. Although such situations rarely happen, the necessary infrastructure makes it feasible to
manage and control traffic more effectively in such extreme cases.

Figure 4: Configuration of pre-signals.

In general, the upper bound for car inflow at an intersection with a flexible-sharing strategy is Qcj = Qj−βjµbj
, where βj is a linear reduction factor. This linearity is justified analytically, empirically, and with simulations
in previous research (Guler and Cassidy, 2012; Guler and Menendez, 2014a; He et al., 2018) on flexible-sharing
strategies. Note that βj = ρ would represent a perfect sharing-system. When various degrees of PT priority
are provided at the intersection level by moving public transport vehicles in front of the car queues, we have
βj > ρ in general.

For each intersection j ∈ J with flexible-sharing strategies, we have βjµ
b
j + µcj ≤ Qj . Summing over

all intersections, we have
∑
j

(min
j
βj)µ

b
j +

∑
j

µcj ≤
∑
j

βjµ
b
j +

∑
j

µcj ≤
∑
j

Qj . Adding the car inflows from

intersection l ∈ L, we have
∑
j

(min
j
βj)µ

b
j +

∑
m∈J∪L

µcm ≤
∑

m∈J∪L
Qj . Since M = J ∪ L, this is equivalent to

(min
j
βj)µ

b + µc ≤ Q.

During transient periods, if (min
j
βj)µ

b + µc exceeds Q, we scale µb and µc with the same factor such that

(min
j
βj)µ

b + µc = Q, so that the maximum capacity is utilized while the optimal ratio between public

transport vehicle inflow and car inflow is maintained. Other possibilities exist for this case, for example
giving full priority to public transport by satisfying the calculated public transport vehicle inflow, and giving
the remaining capacity to cars. The exact solution can be determined empirically based on the characteristic
of the network and the goal of the control. However, since most of the time the network is maintained around
the steady-state and Eq.6 is satisfied, the difference between different treatments should be insignificant.

The more general cases: Bimodal strategy with both dedicated lanes and flexible-sharing
strategies immediately upstream of the perimeter intersections with PT lines (M = I ∪ J ∪ L)

Lastly, we briefly discuss the more general cases when a bimodal perimeter control strategy is implemented
with dedicated PT lanes upstream of some perimeter intersections and flexible-sharing strategies upstream of
the others. In this case, we can similarly derive

∑
i

µci +
∑
l

µcl ≤ Qc,
∑
i

ρµbi ≤ Qb, and
∑
j

(min
j
βj)µ

b
j +
∑
j

µcj ≤
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Qf . Summing both sides of all three constraints, a necessary condition is µc +
∑
i

ρµbi +
∑
j

(min
j
βj)µ

b
j ≤ Q.

We see this lies in between the requirement imposed by the two extreme cases, i.e. with only dedicated
lanes or only flexible-sharing strategies for the pubic transport lines in the perimeter. Therefore, we expect
all results to be in between these two cases. In other words, if there are more perimeter intersection with
dedicated PT lanes, the results will be similar to the case where only dedicated PT lanes are implemented,
and vice versa. Hence, we only test and analyze the two extreme cases.

5.2. Simulation environment

The city center of Zurich is chosen as the example for the simulation, i.e. all the network parameters are set
to be close to the empirical values for this area. We simulate this network because a well-defined empirical
3D-MFD has been recently reported (Loder et al., 2017) for this area, hence it can be used for the simulation
study to generate realistic results and make meaningful comparisons between strategies. To the authors’
best knowledge, this is the first work to test a perimeter control strategy with an empirical 3D-MFD. This
empirical 3D-MFD is given by Eq.2 and depicted in Fig. 1.

This area is relatively small (around 2.5km2). It has a homogeneous topology and similar hierarchy in the
road network, e.g. no mixing with freeways. Moreover, public transport bunching is extremely rare in
Zurich through its consistent PT priority policy. Therefore, PT vehicles are generally uniformly distributed.
All these factors ensure homogeneity (both for cars and PT) in the controlled area, hence perimeter control
strategies can then be applied on this area without further partitioning. Also, in the city center of Zurich, 75%
of all PT lane-km are dedicated lanes. In particular, all PT lines access the city center through dedicated
lanes, hence the proposed bimodal strategy can be easily implemented with the existing infrastructure.
Given the network configuration, we assume Qb = 6000PCE/h and Qc = 14000PCE/h (and total capacity
Q = 20000PCE/h) for the network perimeter. This can represent the case where about 60% of the perimeter
intersections have incoming PT lines. Cases with different network characteristics will be discussed in Section
6.2. We use a typical passenger car equivalence (PCE) factor ρ = 3. For strategy 3, we assume that pre-
signals of the type depicted in Figure 4 are implemented with βj = ρ, ∀j ∈ J . The value of β is found to
have little effect on the results.

We simulate realistic traffic scenarios during a morning period of 1.5 hours. In the first half hour, the
incoming car demand is relatively low. Then, in the next half hour, the incoming car demand is at peak.
After that, the incoming car demands return to the initial off-peak value. Preliminary simulation tests show
that a perimeter control strategy of any kind only brings significant benefit to the system when the incoming
car demand is higher than 15000veh/h. Below this value, there is no need for perimeter control strategies
because the network will not be congested. On the other hand, when the incoming car demand exceeds
20000veh/h, a long queue will quickly accumulate in the network perimeter. Such a long queue can cause
spillbacks outside the network, and may eventually damage the operation of the entire system. Therefore,
the range of peak period incoming car demands tested is between 15000veh/h and 20000veh/h. We present
results from the two extreme cases. Other cases in between also have results in between these two extreme
cases. Simulation profiles of the incoming car demands (dcext) are shown in Figure 5a.

The demand originating from within the network (dcint) is assumed to be constant at 3500veh/h. Since no
PT line originates from within the city center, the corresponding PT demand (dbint) is assumed to be 0. The
initial traffic accumulation within the network at the onset of the simulation is 10 PT vehicles and 500 cars
(i.e. nnn(0) = (10, 500)T ), which is in the uncongested regime, and there is no outside accumulation for both
modes (i.e. nnnout(0) = (0, 0)T ).

Empirical data shows that the range of incoming PT demand for the simulated area is between 100veh/h
and 200veh/h. The PT headway has little variation during the morning period. Hence, we test three levels
of constant PT demands at 100veh/h, 150veh/h, and 200veh/h. The PT passenger occupancy is obtained
from the Zurich public transport authority (VBZ). Statistics show that the occupancy is around 30pax/veh
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during off-peak periods and 50pax/veh during peak periods. The car passenger occupancy is obtained from
the Swiss Federal Statistical Office (BFS) and assumed to be constant at 1.2pax/veh. Cases with different
PT passenger occupancy will be discussed in Section 6.1. Simulation profiles of the incoming PT demands
(dbext) and PT passenger occupancy (hb) are shown in Figure 5b and c, respectively.

Each strategy is tested in the simulation for all 6 incoming demand profile combinations in Figure 5. Note
that simulations after the peak period are run until all trips generated in the 1.5 hours are completed.
Evidently, when the demand is higher, the simulation will be running for a longer time, because more trips
are generated.

Figure 5: a. Incoming car demands dcext. b. Incoming PT demands dbext. c. PT passenger occupancy hb.

For all scenarios, the network will become congested without perimeter control. In some cases, a gridlock will
form. Therefore, implementing perimeter control strategies with all three strategies will benefit both modes
for all these scenarios. Our goal is to compare the total system performance and mode-specific performance
across the three strategies. The total system performance consists of two parts, namely the total travel time
inside the network and the total waiting time outside the network perimeter (i.e. queuing due to perimeter
control). The calculation of both parts are based on the assumption of a FIFO queuing system. Moreover,
to make results comparable across different demands, all the following results are only based on the trips
generated during the first 1.5 hours of simulation period, irrespective of the simulation running time, i.e.
trips generated after the first 1.5 hours are not taken into account for the calculations.

To test the strategy performance in simulations, a specific controller needs to be applied. Many controllers
have been developed for perimeter control, for example Proportional-Integral-Derivative (PID) controllers
(Keyvan-Ekbatani et al., 2012) and Model predictive control (MPC) controllers (Geroliminis et al., 2013;
Yang et al., 2018b). Note that it is not the purpose of this paper to design an optimal controller for the
bimodal strategy. Instead, this paper shows a proof-of-concept to illustrate the general properties of the
proposed strategy, and compare it with the single-mode strategy to demonstrate its advantage. This is
crucial as a first step, because implementation of the proposed strategy does not only involve adjustment of
the controllers (i.e. signal timings), but can also involve some infrastructure alterations. When the proposed
bimodal strategy is considered beneficial by the policy makers, similar controller design techniques as those
in the above literature can then be adopted to optimize the controller.

To this end, we compare the performance of a single-mode control strategy with that of a bimodal control
strategy, applying the same type of controller. We implement a PID controller (Åström and Hägglund,
2006), which is a feedback control mechanism applied extensively in both the industry and the research
community (Shabani et al., 2013; Yu and Rosen, 2013). A PID controller aims to reduce the difference
between the desired states and the measured states for some system variables, based on the proportional,
integral, and derivative terms. It is shown in McMillan and Cameron (2003) that the PID can outperform
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MPC for unmeasured disturbances, which are often associated with perimeter control. Moreover, note
that a controller with many parameters is undesirable. If the single-mode and bimodal strategies are both
implemented with such complicated controllers, the differences in control performance could then arguably be
due to parameter settings of the controllers, rather than the strategy design. This hinders the comparison of
the general characteristics between the two strategies, which should be independent of the specific controllers
applied. Therefore, a full PID controller is not necessary. Instead, the proportional controller, a simple yet
effective type of the PID controller, is used in this paper. The proportional controller has been widely applied
in the industry, e.g. in transportation (Zheng et al., 2012) and robotics (Amsuess et al., 2015). More details
about the proportional controller used in our simulations can be found in Appendix A.

5.3. Results and analysis

The system performance of the three strategies is summarized in Table 4 for comparison. The system
performance includes average travel time inside the network, average waiting time outside the network, and
the sum of the two, i.e. the total cost. To better understand how the strategies affect the system performance
over the simulated period, relevant network states for the case with high incoming car demand (20000veh/h)
and low incoming PT demand (100veh/h) are plotted in Figure 6 as an illustrative example.

Table 4: Comparison of the system performance (travel time inside the network; waiting time outside the network; total
cost) of the three perimeter control strategies (PS: Pre-signal; DL: Dedicated lanes; ML: Mixed-lanes) with six demand
profiles. All results are in seconds. Best strategy for each performance metrics is in bold. Best strategy for least average
passenger total cost is shaded.

demand cars PT passenger
car PT ML DL PS ML DL PS ML DL PS

low

low
inside 338 339 339 406 407 407 364 354 354
outside 78 106 97 56 3 3 75 78 71

total 417 445 436 462 410 410 439 432 426

mid
inside 361 366 367 411 412 412 397 381 381
outside 153 196 187 120 7 7 146 129 122

total 514 563 554 531 419 419 544 509 503

high
inside 380 393 394 410 418 419 423 403 404
outside 252 322 313 226 31 31 246 196 191

total 632 715 707 635 449 450 669 600 596

high

low
inside 356 360 362 400 412 412 385 371 372
outside 374 478 452 320 9 9 366 368 348

total 730 838 815 721 421 421 752 738 720

mid
inside 357 379 380 403 415 415 406 389 390
outside 510 641 627 466 10 9 501 442 432

total 867 1020 1007 869 424 425 907 831 822

high
inside 352 404 405 406 418 419 424 410 411
outside 664 829 820 646 31 31 660 524 518

total 1016 1233 1224 1052 449 450 1084 934 929

Noticeably, the differences in results across different strategies and different demands are much larger for
the average waiting time outside the network than for the average travel time inside the network. All three
strategies are able to maintain the network accumulation around the optimal level at all tested demands.
Evidently, when the demand is higher, the average travel times inside the network are a little longer, but
the network is still in the non-congested regime and operates around the optimum car accumulations. In
contrast, if no perimeter control strategy is applied, simulation tests confirm that the network will be
congested during the peak period, resulting in much higher travel time within the network for both modes.
This confirms conclusions from previous studies (Ampountolas et al., 2017) that applying perimeter control
strategies improves the traffic operation for both modes within the network. This is not surprising. We will
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Figure 6: Comparison of the three perimeter strategies in a realistic morning peak period for the case with high incoming car
demand 20000veh/h and low incoming PT demand 100veh/h.

focus our analysis on comparing the three strategies. Note that, while the travel times inside the network
have very small differences, the average waiting time outside the network varies significantly across different
strategies and different demands. A detailed analysis is provided below.

Looking at the average car waiting time outside, with all three strategies the waiting times increase signifi-
cantly with increasing demands. This is true in general for any perimeter control strategy, because at higher
demands, more vehicles needs to be held up in the perimeter for the network to be operating at optimal
without getting seriously congested. Not surprisingly, mixed lanes always result in the smallest car waiting
time among the three strategies. When the PT frequency is low, pre-signals have similar average car waiting
times as mixed lanes, which is smaller than dedicated lanes. This is due to the capacity sharing property of
pre-signals as a flexible-sharing strategy to maximally utilize the capacity of the perimeter intersections.

Looking at the average PT waiting time outside, not surprisingly, mixed lanes always result in the largest PT
waiting time. In fact, the waiting time increases significantly with increasing demands, because PT vehicles
receive no priority and will be queued outside the perimeter with the cars. This can be observed from Figure
6 for mixed lanes. Starting from t = 0.5h, a significant number of PT vehicles will be queued in the perimeter.
This also hinders the network from reaching its target PT accumulation, since there is no possibility to let
in more PT vehicles once the target car accumulation is reached. In contrast, pre-signals and dedicated
lanes result in much smaller PT waiting times and a small PT accumulation outside the network. Note
that the PT operations with these two strategies are exactly the same. Therefore, PT priority is provided
with both bimodal strategies, and a similar level of priority is achieved. Moreover, since PT inflow can be
independently regulated with bimodal perimeter control, the network can always operate around the target
PT accumulation. Therefore, overall we conclude that a bimodal strategy is more efficient in achieving the
traffic management and control goals than a single-mode approach.

Looking at average passenger waiting time outside, both bimodal strategies outperform the single-mode
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strategy with mixed lanes for all tested demands. This is due to the space efficiency of the PT mode and the
PT priority provided by the bimodal strategies. Moreover, implementing a bimodal strategy with pre-signals
always outperform dedicated lanes. This is because pre-signals can provide a similar level of PT priority as
dedicated lanes, while achieving a higher perimeter car inflow.

Since the variations are much larger for the average waiting time outside the network than for the average
travel time inside the network, the total travel cost is dominated by the waiting time outside. Therefore,
not surprisingly the bimodal strategies (i.e. strategy 2 and 3) outperform the single-mode strategy (i.e.
strategy 1) from a passenger perspective for all tested demands. Moreover, the bimodal strategy can provide
significant PT priority, especially when the car demand is high, as the total travel cost is much smaller
with PT than with cars, when either bimodal strategy is implemented. Lastly, comparing the two bimodal
strategies, we conclude that implementing pre-signals (i.e. strategy 3) outperform dedicated lanes from a
passenger perspective for all tested demands. Further simulation tests show that all qualitative results (i.e.
comparison between three strategies) remains valid when there is stochasticity and uncertainty in the system.
More details can be found in Appendix B.

6. Sensitivity to different traffic scenarios

The simulation results in Section 5 demonstrates that from a passenger mobility perspective:

• The bimodal perimeter control strategy always outperforms the single-mode strategy, i.e. both Strategy
2 and Strategy 3 outperform Strategy 1. This further confirms our theoretical results in Section 4

• Implementing the bimodal strategy with pre-signals always outperforms dedicated lanes, i.e. Strategy
3 outperforms Strategy 2.

However, different transportation networks have different traffic scenarios, which might differ from that of
Zurich city center. In order to offer general recommendations to the policy makers, we need to evaluate
the validity of the above conclusions for a range of different traffic scenarios. Moreover, implementing the
bimodal strategy might require additional infrastructure investment, for example some lanes in the perimeter
need to be converted to dedicated lanes. When flexible-sharing strategies such as pre-signals are considered,
the infrastructure investment and control complexities are even higher. Therefore, even if a bimodal strategy
is advantageous, it is necessary to quantify the benefit for different traffic scenarios, so that policy makers
can decide whether the investment is justified. To this end, a sensitivity analysis is carried out in this section
to answer the following two questions for a range of traffic scenarios:

• If we are considering implementing perimeter control, how much extra benefit does a bimodal perimeter
control strategy offer, compared to a single-mode one?

• If we are considering implementing a bimodal perimeter control strategy, how much extra benefit does
the additional investment to implement flexible-sharing strategies offer, compared to implementing
only dedicated lanes?

The difference between the average passenger travel cost (travel time inside the network plus the waiting
time outside the network) is calculated for different strategies with different scenarios to answer these two
questions. The difference between mixed lanes (Strategy 1) and dedicated lanes (Strategy 2) is calculated to
answer the first question. The difference between dedicated lanes (Strategy 2) and flexible-sharing strategies
(Strategy 3) is calculated to answer the second question. Note that in both cases, when the difference is
smaller than 0, the former strategy performs better than the latter one.
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We use a one-at-a-time (OAT) method with the simulation model developed in Section 5 for the sensitivity
analysis of multiple parameters, i.e. when the sensitivity of each parameter is tested, all other parameters
are held constant. Other more complex methods (e.g. Ge and Menendez (2014, 2017); Ge et al. (2015)) can
be used in the future to account for the combined effects of multiple parameters. Results with PT passenger
occupancy and proportion of perimeter intersections with PT lines are presented in this section, respectively.
Other parameters, such as the flexible-sharing strategy reduction factor and duration of the peak period,
are found to have little effect on the qualitative conclusions, i.e. they do not affect the comparison between
strategies.

6.1. PT passenger occupancy

Since one primary purpose for implementing a bimodal perimeter control strategy is to provide PT priority,
the PT passenger occupancy (hb) will be a critical parameter in deciding how much priority should be given
to PT. Intuitively, we expect the bimodal strategy to become more beneficial as the PT passenger occupancy
gets higher. To quantify this, we analyze peak period PT passenger occupancy ranging from 30pax/veh to
70pax/veh. The results are summarized in Figure 7.

Figure 7: Sensitivity to PT passenger occupancy: a. Difference between the average passenger total travel cost with mixed
lanes and dedicated lanes at different PT passenger occupancies; b. Difference between the average passenger total travel cost
with dedicated lanes and flexible-sharing strategies at different PT passenger occupancies.

From Figure 7a we see that for all tested scenarios, the increase in system benefit from implementing the
bimodal strategy with dedicated lanes is approximately linear with the increase in PT passenger occupancy.
For cases with a high PT frequency, the bimodal strategy is always beneficial, even at relatively low PT
occupancy levels. However, for cases with a low PT frequency, the bimodal strategy can harm the system,
when the PT occupancy is very low. This is not surprising. When PT frequency and passenger occupancy
are both low, PT priority and space allocation are not justified. Comparing the two bimodal strategies in
Figure 7b, implementing flexible-sharing strategies always offers extra benefit. Notice that flexible-sharing
strategies offer the most extra benefit in the case with high car demand and low PT frequency. This additional
benefit more than compensates the harm from implementing dedicated lanes at low PT passenger occupancy
levels. Hence, in these cases, the bimodal strategy with flexible-sharing strategies performs better than a
single-mode one.

In summary, it is always more beneficial to implement a bimodal perimeter control strategy compared to a
single-mode one, irrespective of the PT passenger occupancy. However, if the PT passenger occupancy and
demand are both low, it is necessary to implement flexible-sharing strategies for the bimodal strategy. When
both dedicated lanes and flexible sharing strategies are applicable, implementing flexible-sharing strategies
offers an approximately constant amount of additional benefit irrespective of the PT passenger occupancy.
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6.2. Proportion of perimeter intersections with PT lines

Recall that a necessary infrastructure requirement when implementing a bimodal perimeter control strategy
is that all PT lines need to enter the controlled area through dedicated lanes. Therefore, if originally all
perimeter intersections have mixed lanes to access the controlled area, the number of lanes which need to
be converted to dedicated PT lanes is higher when the proportion of perimeter intersections with PT lines
is higher. This is associated with proportionally higher infrastructure investment, hence it is an important
parameter to analyze. Furthermore, this determines the perimeter capacity share between modes (i.e. Qc

and Qb for a given Q) when dedicated lanes are implemented. This capacity share then determines the
constraints on the inflows. The calculated optimal inflow might not be realized if the perimeter capacity of
the corresponding mode is too low, resulting in less than optimal network accumulation and unnecessary
queues outside the perimeter.

We analyze the proportion of perimeter intersections with PT lines range from 20% (i.e. a network where
only a few perimeter intersections have PT lines) to 100% (i.e. a network where all perimeter intersections
have PT lines). When dedicated lanes are implemented on these intersections for the bimodal strategy, the
perimeter PT capacity correspondingly ranges from 2000PCE/h to 10000PCE/h, assuming the two modes
equally split the capacity at the shared intersections. Therefore, the potential network PT capacity share
ranges from 0.1 to 0.5. The results are summarized in Figure 8. Note that Qb/Q = 0 (i.e. Qc = 20000PCE/h)
corresponds to the case when there is no PT lines going through the network perimeter, hence is irrelevant
to the topic of this paper.

From Figure 8a we see that implementing the bimodal strategy with dedicated lanes is beneficial when not
many perimeter intersections have PT lines. In this case, only a small number of dedicated lanes need to
be implemented. This means that a relatively small investment could result in significant benefit for the
network. Also, when the PT frequency is high, it is always beneficial to implement dedicated lanes for
all tested scenarios. This is not surprising because the PT priority provided will increase the road space
efficiency. On the other hand, when the PT frequency is low and many perimeter intersections have PT
lines, implementing the bimodal strategy with dedicated lanes can harm the system. This is because the
network perimeter will be dedicating too much capacity to PT, while leaving inadequate capacity for cars.

From Figure 8b we see that for all tested scenarios it never harms the system to implement flexible-sharing
strategies on the dedicated lanes. When many perimeter intersections have PT lines, the benefit to imple-
ment flexible-sharing strategies on all of them is significant. This is because flexible-sharing strategies can
significantly increase the car inflow compared to dedicated lanes, while still providing a similar level of PT
priority. Admittedly, more flexible-sharing strategies need to be implemented when there are more dedi-
cated lanes, which requires a larger investment. However, while the amount of investment required usually
increases at a decreasing rate due to economies of scale, the increase in benefit offered by flexible-sharing
strategies is clearly increasing at an increasing rate. This is especially the case when the PT frequency is
low. Recall that with low PT frequencies, implementing dedicated lanes may harm the system. However,
comparing Figure 8a and Figure 8b, the benefit from additionally implementing flexible-sharing strategies
on these intersections more than compensates the harm from implementing dedicated lanes on them. Hence,
in these cases, the bimodal strategy with flexible-sharing strategies still performs better than a single-mode
one.

In summary, it is always more beneficial to implement a bimodal perimeter control strategy compared to a
single-mode one, irrespective of the proportion of perimeter intersections with PT lines. However, if many
perimeter intersections have PT lines, it is necessary to implement flexible-sharing strategies for the bimodal
strategy. When both dedicated lanes and flexible sharing strategies are applicable, implementing the bimodal
strategy with these two infrastructure configurations results in similar system performance.
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Figure 8: Sensitivity to the proportion of perimeter intersections with PT lines (i.e. perimeter PT capacity share after
dedicated lanes are implemented for these PT lines): a. Difference between the average passenger total travel cost with mixed
lanes and dedicated lanes at different potential perimeter PT capacity shares; b. Difference between the average passenger total
travel cost with dedicated lanes and flexible-sharing strategies at different potential perimeter PT capacity shares.

7. Conclusions and discussions

The contribution of this paper is twofold. First, methodologically, we develop an integrated and system-
atic framework for the optimization of bimodal urban networks using 3D-MFDs. Such a methodological
framework is necessary due to the complexities of bimodality, i.e. the two modes are often coupled. This
framework takes into consideration multiple goals of decision makers, which are often conflicting. We propose
to first obtain the pareto frontier for conflicting objectives using 3D-MFDs, and then evaluate the optimal
solution for a linear objective such as the passenger flow. In this way, effective strategies can be designed
for the planning, management, and control of bimodal networks. In particular, strategies to provide public
transport priority on the network level can be holistically evaluated.

Second, we propose, model, and analyze one such strategy, a bimodal perimeter control strategy, as an
application of the methodological framework. The proposed strategy addresses a pressing problem of the
existing perimeter control schemes: public transport vehicles will be queuing with the cars in the perimeter
and hence blocked from entering the network. This impairs the service quality of public transport. To
the authors’ best knowledge, the proposed bimodal strategy is the first strategy in literature which enables
public transport vehicles to bypass the car queues in the perimeter of the network. Adopting this strategy,
the inflows of public transport and cars can be controlled independently (i.e. both inflows are controllable),
the network traffic can be managed more efficiently, and public transport priority can be provided in the
perimeter.

To analytically evaluate the performance of the bimodal strategy, the interactions between the two modes,
both within the network and in the network perimeter, are mathematically modelled. Within the network,
we develop a bimodal perimeter control model using the 3D-MFD to quantify the complex dynamics of the
two modes. In the network perimeter, we model how the perimeter infrastructure imposes constraints to the
traffic inflow with different degrees of coupling between the two modes. Overall, the mathematical model
enables the quantitative analysis of a general bimodal perimeter control strategy.

The performance of the bimodal strategy is evaluated both analytically and with simulations. Analytically,
we apply the proposed methodological framework to evaluate the performance of the strategy at steady-
states. We compare its performance to the case when a single-mode strategy is implemented, and derive the
theoretical lower bound for improvement in passenger flow. Furthermore, we use a macroscopic simulation
based on the city center of Zurich, with its empirical 3D-MFD, to evaluate the bimodal strategy with realistic
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demands. This is also the first test of perimeter control using an empirical 3D-MFD.

We have chosen a macroscopic approach using 3D-MFD for modeling and analysis because it offers four main
benefits. First, the 3D-MFD offers a macroscopic view of the bi-modal system without the need for tracking
individual vehicles. Although a microscopic approach can also be used, it would introduce too many factors
that add unnecessary complexity to the analysis. Second, a 3D-MFD enables us to develop an integrated
and systematic framework in Section 2 for the optimization of bimodal urban networks. Third, a 3D-MFD
models the interaction between public transport vehicles and cars. Therefore, with a 3D-MFD, we can model
how the traffic system evolves with the proposed bimodal strategies. This helps us to model the bimodal
perimeter control strategy in Section 3. Fourth, the 3D-MFD provides an analytical tool to evaluate and
optimize the performance of bimodal perimeter control strategies. This helps us in Section 4 to derive the
theoretical lower bound for improvement when a bimodal perimeter control strategy is implemented, and
also to calculate the optimal network traffic accumulations, which are used in the controllers in Section 5.

Results from both the analytical and simulation studies show that the bimodal strategy always performs
better than the single-mode strategy in terms of passenger mobility. Most importantly, the bimodal strategy
differentiates the public transport mode and the car mode, with much smaller queueing time outside the
network for public transport. To offer recommendations to policy makers on whether to implement the
bimodal strategy with dedicated lanes or with flexible-sharing strategies, we compared their performance
in a variety of traffic scenarios. Results show that the extra benefit with flexible-sharing strategies is most
significant when the public transport passenger occupancy and demand are both low, or if many perimeter
intersections have public transport lines going into the network. In other cases, dedicated lanes can be an
efficient solution, as implementing flexible-sharing strategies comes with additional infrastructure investment
without significant extra benefit.

It should be noted that both the methodological framework and the bimodal strategy model are independent
of the shape of the 3D-MFD, the controller, and the traffic management and control goals. Hence, we expect
them to be generally applicable and the qualitative conclusions generally valid. Overall, implementing
the bimodal strategy not only improves the bimodal traffic within the network, but also prioritizes public
transport. It is a promising traffic management and control strategy which can improve the overall urban
mobility. In the long run, good public transport service can encourage more people to commute with public
transport into the city, which can further reduce the congestion both within and outside the network, and
eventually shift the transportation system to a more sustainable state.
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Appendix A. The proportional controller in simulations

The controller can be designed according to the target accumulation ñnn calculated from Eq.5 and Eq.6. Note
that although in theory the state of the system nnn can be measured in real time, and the corresponding control
can be calculated and varied in real time, this is not how it is implemented in practice for perimeter control.
Firstly, perimeter control is usually realized with pulsed servers (e.g. traffic signals). Hence, the control µµµ
is only meaningful in a time-average sense. Secondly, it takes some time for the network to stabilize before
the accumulation nnn can be correctly measured by available detectors. For these reasons, the controller is
updated in real time for every control application period of duration ω (e.g. 5 minutes). Note that the control
design period (Ω) contains multiple control application periods (ω) because controllers are designed based
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on predictions on larger time scales (e.g. 30 minutes). The prediction is based on real-time measurement
(from connected vehicles, loop detectors, etc.) and/or historical data.

To obtain the controller, we first linearize the non-linear dynamic equations Eq.3 around the corresponding
steady-state ñnn using the first order Taylor expansion, then discretize the resulting linear equation with a
discretization step of ω, and obtain Eq.A.1.

∆nnn((k + 1)ω) = AAA∆nnn(kω) +BBB∆µµµ(kω) (A.1)

where k represents the index of the control application period. The deviation from the target accumulation
at steady-state is ∆nnn = nnn − ñnn ∈ R2×1. The deviation from steady-state control is ∆µµµ = µ − µ̃ ∈ R for
single-mode control, and ∆µµµ = µµµ− µ̃µµ ∈ R2×1 for bimodal control. AAA and BBB are the linear matrices evaluated
at ñnn. AAAis the state matrix, and BBB is the control matrix, where BBB = θθθ ∈ R2×1 for single-mode control, and
BBB ∈ R2×2 is the identity matrix for bimodal control.

The proportional controller assumes that the deviation from steady-state control ∆µµµ should be set propor-
tionally to the deviation from the steady-state accumulation ∆nnn. The proportionality is quantified by the
control gain factor KKK, hence,

∆µµµ = −KKK∆nnn (A.2)

where KKK ∈ R1×2 for single-mode control ; KKK ∈ R2×2 for bimodal control.

Our control objective is to reach the target accumulation ñnn and control µ̃µµ quickly, and maintain the network
at the steady-state with little fluctuations. Therefore, an appropriate objective function is the weighted
squared deviations from the target on the infinite horizon:

L =

∞∑
k=0

(
∆nnnT (kω)SSS∆nnn(kω) + ∆µµµ(kω)TRRR∆µµµ(kω)

)
(A.3)

where SSS andRRR are weighting factors 1 which stabilize the network accumulation nnn and control µµµ, respectively.
SSS and RRR respectively represent the trade-off between the network accumulation and control, and the trade-
off between the public transport and car mode. The optimal proportional controller which minimizes the
objective function L has gain factor KKK = RRR−1BBBTXXX, where XXX ∈ R2×2 is a positive definite matrix satisfying
the algebraic Riccati equation associated with Eq.A.1–A.3.

XXX = SSS +AAAT (XXX −XXXBBB(RRR+BBBTXXXBBB)−1BBBTXXX)AAA (A.4)

Overall, the control process can be summarized graphically in the control diagram in Figure A.9.

All three perimeter control strategies are implemented with the proportional controllers designed according
to Figure A.9. The controllers have RRR = [[0.5, 0]; [0, 1]] for bimodal control; RRR = 0.1 for single-mode control;
SSS = [[1, 0]; [0, 5]]. These parameters are calibrated by optimizing each strategy following a cross validation
procedure to minimize the total travel cost both inside and outside the network. The design and application
periods are chosen as ω = 5mins; and Ω = 30mins, respectively.

1Note that for single-model control, RRR ∈ R; for bimodal control, RRR ∈ R2×2. SSS ∈ R2×2 for both cases.
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Figure A.9: Control diagram for bimodal perimeter control with a proportional controller.

Appendix B. Performance with noise

We test the performance of the three strategies with stochasticity and uncertainty in the system, i.e. in a noisy
environment. This is necessary because, on one hand, the real-world traffic system is highly stochastic. The
actual traffic demand fluctuates over time, and the evolution of the traffic system cannot be fully characterized
with an MFD. On the other hand, due to limited coverage of traffic detectors, errors in measurement, and
data corruption in transmission, we do not have perfect information on the accumulations inside the network.
Therefore, it is important to evaluate the three strategies in a more realistic noisy environment before real-
world deployment. We evaluate the system performance at a moderate noise level. In particular, we consider
three types of noises: the stochasticity in the MFD, the variation in demand, and the error in the estimated
accumulations.

For the stochasticity in the MFD, we assume the actual outflows from the network for both buses and
cars follow a uniform distribution between 0.9g(n) and 1.1g(n). For the variation in demand, we assume it
follows a Gaussian distribution with mean 0 and a standard deviation of 10% of the average demand. For
the error in the estimated accumulations, we assume it follows a Gaussian distribution with a mean of 0 and
a standard deviation of 10% of the actual value. These noise variables are assumed to be independent of
each other. Essentially, the noises make the actual values different from the theoretical values used to devise
the perimeter controller, resulting in suboptimal performance. To evaluate how these noises in the system
affect system performance, all other simulation settings are the same as in Section 5.3, and results with and
without noises are compared.

The system performance of the three strategies in the simulated noisy environment is summarized in Table
B.5 for comparison. Table B.5 also compares all results in the noisy environment to the results without
noises presented in Table 4. To better understand the system performance over the simulated period,
relevant network states over the simulated period for the case with high incoming car demand (20000veh/h)
and low incoming PT demand (100veh/h) are plotted in Figure B.10 as an illustrative example.

It can be seen that the travel costs in Table B.5 are slightly higher due to stochasticity and uncertainty in
the system. Nevertheless, the conclusions in Section 5.3 still hold. Figure B.10 shows that all three strategies
are still able to maintain the car accumulations around the target, and the bimodal strategies are still able
to maintain the PT accumulation also around the target. Therefore, we can conclude that all the three
strategies are robust to moderate noises. In realistic traffic scenarios with noises, the bimodal strategies (i.e.
strategy 2 and 3) still outperform the single-mode strategy (i.e. strategy 1), and implementing pre-signals
for the bimodal strategy (i.e. strategy 3) still outperforms dedicated lanes.
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Table B.5: Comparison of the system performance (travel time inside the network; waiting time outside the network; total
cost) of the three perimeter control strategies (PS: Pre-signal; DL: Dedicated lanes; ML: Mixed-lanes) with six demand
profiles in a noisy environment. All results are in seconds. Percentage increase in total cost due to noise is in parentheses.
Best strategy for each performance metrics is in bold. Best strategy for least average passenger total cost is shaded.
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car PT ML DL PS ML DL PS ML DL PS
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Figure B.10: Comparison of the three perimeter strategies in a realistic morning peak period considering noises: network
states and control parameters for the case with high incoming car demand 20000veh/h and low incoming PT demand 100veh/h.
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