Loughborough University
Browse

Quality assessment for virtual reality technology based on real scene [RETRACTED ARTICLE]

Download (2.88 MB)
journal contribution
posted on 2024-06-12, 11:54 authored by Bin Jiang, Jiachen Yang, Na Jiang, Zhihan Lv, Qinggang MengQinggang Meng
Virtual reality technology is a new display technology, which provides users with real viewing experience. As known, most of the virtual reality display through stereoscopic images. However, image quality will be influenced by the collection, storage and transmission process. If the stereoscopic image quality in the virtual reality technology is seriously damaged, the user will feel uncomfortable, and this can even cause healthy problems. In this paper, we establish a set of accurate and effective evaluations for the virtual reality. In the preprocessing, we segment the original reference and distorted image into binocular regions and monocular regions. Then, the Information-weighted SSIM (IW-SSIM) or Information-weighted PSNR (IW-PSNR) values over the monocular regions are applied to obtain the IW-score. At the same time, the Stereo-weighted-SSIM (SW-SSIM) or Stereo-weighted-PSNR (SW-PSNR) can be used to calculate the SW-score. Finally, we pool the stereoscopic images score by combing the IW-score and SW-score. Experiments show that our method is very consistent with human subjective judgment standard in the evaluation of virtual reality technology.

Funding

This research is partially supported by National Natural Science Foundation of China (Nos. 61471260 and 61271324) and Natural Science Foundation of Tianjin (No. 16JCYBJC16000).

History

School

  • Science

Department

  • Computer Science

Published in

Neural Computing and Applications

Volume

29

Issue

5

Pages

1199-1208

Citation

JIANG, B. ... et al, 2018. Quality assessment for virtual reality technology based on real scene. Neural Computing and Applications, 29 (5), pp. 1199-1208.

Publisher

Springer

Version

  • AM (Accepted Manuscript)

Rights holder

© The Natural Computing Applications Forum

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2016-12-19

Publication date

30-12-2024

Notes

This article was retracted by the publisher on 14 May 2024. Further details can be found here: https://doi.org/10.1007/s00521-024-09950-1 This is a post-peer-review, pre-copyedit version of an article published in Neural Computing and Applications. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00521-016-2828-0

ISSN

0941-0643

eISSN

1433-3058

Language

  • en