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Abstract

The character of an electronically excited state is one of the most important descriptors employed to discuss
the photophysics and photochemistry of transition metal complexes. In transition metal complexes, the interaction
between the metal and the di�erent ligands gives rise to a rich variety of excited states, including metal-centered,
intra-ligand, metal-to-ligand charge transfer, ligand-to-metal charge transfer, and ligand-to-ligand charge transfer
states. Most often, these excited states are identi�ed by considering the most important wave function excitation
coe�cients and inspecting visually the involved orbitals. This procedure is tedious, subjective, and imprecise. Instead,
automatic and quantitative techniques for excited-state characterization are desirable. In this contribution we review
the concept of charge transfer numbers—as implemented in the TheoDORE package—and show its wide applicability
to characterize the excited states of transition metal complexes. Charge transfer numbers are a formal way to
analyze an excited state in terms of electron transitions between groups of atoms based only on the well-de�ned
transition density matrix. Its advantages are many: it can be fully automatized for many excited states, is objective
and reproducible, and provides quantitative data useful for the discussion of trends or patterns. We also introduce a
formalism for spin-orbit-mixed states and a method for statistical analysis of charge transfer numbers. The potential
of this technique is demonstrated for a number of prototypical transition metal complexes containing Ir, Ru, and
Re. Topics discussed include orbital delocalization between metal and carbonyl ligands, nonradiative decay through
metal-centered states, e�ect of spin-orbit couplings on state character, and comparison among results obtained from
di�erent electronic structure methods.
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1. Introduction

Transition metal complexes (TMCs) are a very rich class of molecules with a vast array of possible applications.
One very interesting aspect of TMCs is their collection of exceptional excited-state properties—i.e., their spectroscopic,
photophysical, and photochemical properties. Due to these properties, various classes of TMCs are actively employed,
or show high potential, for a large number of innovative technological applications [1]. They are used in devices
which convert solar energy, either directly to electrical current in dye-sensitized solar cells [2–5], to chemical energy
of fuels in arti�cial photosynthesis [6, 7], or to complex chemicals in TMC-based photocatalysis [8–10]. Furthermore,
TMCs are useful in photodynamic therapy [11–13], where light activates therapeutically bene�cial chemical reactions
that initiate apoptosis. TMCs can also be used to produce light, either for illumination or display purposes in organic
light-emitting diodes (OLEDs) [4, 14–16], or for various kinds of luminescent probes in biochemical research [9, 17–
19], biological imaging [13, 20], or sensoring [13]. Moreover, TMCs can also be used to modify light, by means of
their non-linear optical properties [4, 21] or photoswitching abilities [22, 23].

From a chemical point of view, TMCs provide a highly �exible toolbox: by varying the central metal atom or the
ligand sphere, the complexes can be functionalized in order to �ne-tune properties and integrate them into di�erent
chemical or biological environments. The speci�c interaction between the metal and the di�erent ligands leads to
several distinct “textbook” classes of excited states in TMCs—metal-centered states (MC), intra-ligand states (IL),
metal-to-ligand charge transfer states (MLCT), ligand-to-metal charge transfer states (LMCT), and ligand-to-ligand
charge transfer states (LLCT)—whose properties and interplay are of central importance [24–28]. Actually, most
of the above-mentioned applications are based on achieving some favorable properties of particular excited states
[16, 29, 30]. For example, redox photocatalysis exploits the fact that MLCT states can be both better electron acceptors
and electron donors than the ground state [9]. TMC-based OLEDs rely on MLCT states which provide ultrafast
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excited-state dynamics—internal conversion (IC) and intersystem crossing (ISC)—and a long life time of the lowest
excited state [15, 16]. On the other hand, the population of MC states often leads to highly e�cient nonradiative
decay to the ground state or to the dissociation of metal-ligand bonds [15, 31, 32]. Which type of electronic states
are involved upon excitation is also relevant for sensoring/imaging/photolabeling applications because states of
MLCT and LLCT character often show a high sensitivity to the environment, leading, e.g., to solvato- [33] or
rigidochromism [34]. Moreover, in certain TMCs, such as metal carbonyls, the population of MLCT or MC states
a�ects the vibrational spectra such that these states can be conveniently probed with IR spectroscopy [35].

Due to the very large interest in the excited states of TMCs, there is an e�ort to describe these states accurately,
mostly in terms of their transition energies, optical intensity, and state character. Theoretically, two general
approaches can be distinguished to this aim [16]. Phenomenological or semi-empirical methods—like the ligand-�eld
theory [36–38]—excel at providing simple, uni�ed, and qualitative models with signi�cant predictive power [16]. In
contrast, quantum chemistry, based either on wave function approaches or density functional theory (DFT), allows
for quantitative predictions related to individual compounds. Nowadays, quantum chemical computations can be
considered the main work horse for the theoretical prediction of excited-state properties of TMCs. However, to boil
down the large amount of computed data into simple and general statements is challenging because comprehensive
analysis tools are not as developed as the quantum chemical methods themselves.

That the accurate computational description of excited states of TMCs is a formidable challenge is evidenced by
the large amount of literature devoted to this topic, see, e.g., Refs [1, 25–27, 39–47]. The di�erent classes of excited
states depend to a di�erent extent on the description of electronic correlation and exchange e�ects, necessitating
a well-balanced method. Among the many electronic structure methods available, two approaches are most often
applied to TMCs. One are multi-con�gurational/multi-reference methods [41, 44, 46], including complete active
space self-consistent �eld (CASSCF) [48], CAS second-order perturbation theory (CASPT2) [49], as well as the related
NEVPT2 [50] or MRPT2 [51], and multi-reference con�guration interaction (MRCI) [52]. The other avenue is to
employ DFT with its excited-state extension TD-DFT (time-dependent DFT) [53–56], which is the standard practice
due to its favorable balance between accuracy, computational cost, and usability [25, 41, 46]. A detailed description
of these methods is beyond the scope of this work. However, regardless of the method chosen, several computational
aspects are important to describe accurately TMCs [26]. Foremost, metal atoms induce strong relativistic e�ects due
to their large nuclear charge, especially scalar relativistic e�ects and spin-orbit coupling (SOC), and those should
be included in the calculations [57, 58]. Additionally, environment e�ects can be critical in obtaining results with
predictive power regarding experimental observables [59].

Once an accurate calculation of the excited states has been performed, detailed insight into the excited-state
characters is indispensable in order to tune TMCs for technological applications. In TMCs, such an analysis of the
excited-state wave functions is very demanding, as often the excited states are represented as linear combinations
of di�erent con�gurations composed of delocalized orbitals whose character is not well de�ned. In this context, it
should be remembered that these orbitals are simply a way to represent the many-electron wave function, whereas it
is “fallacious to con�ate the molecular orbitals with anything in the real world” [16]. Moreover, a given computed
state might be a non-trivial linear combination of the “textbook” classes of excited states [29], making assignment
di�cult. Also, the comparison between excited-state properties computed using wave function methods and DFT is
not an easy task and encounters limitations, as, e.g., illustrated for third-row TMCs [58, 60].

The factors above challenge the analysis of excited-state computations, so that in many cases quantitative or
even qualitative insight from the computational results is di�cult to obtain. In this direction, recent developments
have been proposed—mostly focused on the DFT framework—for rationalizing and interpreting charge transfer
excited-states properties [61–69]. These methods are very suitable for analyzing the strength of charge transfer of
low lying states in molecular systems with a clear donor-acceptor structure. However, in TMCs di�erent parts of the
system could act as donors or acceptors and thus it not enough to quantify the charge transfer character but also to
specify its direction, i.e., to clearly discriminate between MLCT, LMCT and LLCT states.

With the goal to ameliorate this situation, an automatic procedure to analyze wave functions as well as electron
densities has been recently designed, providing a variety of visual and quantitative exploration methods for excited-
state computations [70–74]. This comprehensive toolbox has shown to be useful whenever a large number of excited
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states is to be analyzed, e.g., ensemble calculations of spectra, trajectory simulations, or higher excited states [75–78].
Therefore, it is expected to be particularly helpful in the case of TMCs where a high density of electronic excited
states of various characters is present. One additional advantage of these quantitative tools is that they eliminate the
role of subjective reasoning in the discussions. State characters are de�ned based on well-de�ned equations rather
than on the individual subjective interpretation of a molecular orbital (MO). Quantitative tools can also reveal subtle
trends, such as “substitution at some position by a �uorine atom increases the MLCT character of a state by 5%.” Last
but not least, the application of sophisticated analysis tools has allowed identifying physical phenomena such as
excitonic correlation [79, 80] and secondary orbital relaxation [81], which could otherwise not be understood even
qualitatively in the canonical MO picture.

These wave function analysis tools are implemented in the TheoDORE package [82], which provides interfaces
to a wide range of quantum chemistry programs and electronic structure methods. As part of this work, we report a
new interface between the TheoDORE and ADF [83] program packages that allows for a quantitative analysis of
large-scale TD-DFT computations and also provides the possibility of analyzing spin-orbit coupled states. In addition,
we use integrated analysis utilities in the Q-Chem [71, 84] and Molcas [85, 86] program packages in connection with
wave function-based single- and multi-reference methods, where appropriate.

The goal of this review is to present a variety of powerful ways in which wave function analysis can be applied
to TMC excited-state computations. First, we shall introduce several orbital transformation techniques which can be
used to represent excitations (Section 2). By means of descriptors like single-excitation contribution, charge transfer
numbers, or entanglement measures we move away from orbital visualization to a purely numeric representation of
the excitations and we show how these descriptors can be used to compactly depict large number of excited states
(Section 3.1 and 3.2). We also show that a statistical analysis of the numeric descriptors can lead to further insight,
which is otherwise not attainable by simple inspection of the wave functions (Section 3.3).

The applicability of these tools will be demonstrated in a series of calculations on prototypical TMCs containing
Ir(III), Ru(II), and Re(I) centers (Section 4). Five case studies will illustrate the potential of quantitative analysis
techniques at deciphering the excited state characters in di�erent situations, such as: (i) How are the excited-state
characters a�ected by nuclear relaxation? (ii) How does SOC change the mixing ratios between the di�erent classes
of excited states? (iii) How are the excited-state characters in�uence by the ligand substitution? (iv) How can the
interaction of the metal center and the ligands be quanti�ed? (v) And �nally, how does the electronic structure
method a�ect the electronic excited states, and how can one easily compare a multitude of electronic states computed
at di�ering levels of theory?

2. Visual inspection of orbitals

For pedagogical purposes, we begin reviewing qualitative procedures to analyze electronic wave functions.
Without any doubt, the most common way to do so is by inspecting visually the involved orbitals. Despite this being
an intuitive procedure, it should be remembered that the orbitals are only mathematical objects without a direct
physical meaning [16]. As a consequence, there is not one “true” set of orbitals but a number of di�erent visualization
techniques that can be applied, leading to di�erent sets of orbitals. Depending on the visualization technique chosen,
the orbital shapes and, thus, the apparent state characters can be quite di�erent. Hence, we commence this section by
introducing the di�erent techniques available to carry out a qualitative wave function analysis, based on the visual
inspection of MOs. The goal could be formulated as identifying the “textbook” state character of a given electronic
excited state. For this purpose, we shall focus on linear-response (LR) TD-DFT, but most of the techniques described
in this and the following sections can be applied to states computed with other electronic structure methods as well.

In TD-DFT, one considers the response of the electronic density of some molecule to a small time-dependent
perturbation [53–55]. The excitation energies EI , i.e., the energy of the excited state relative to the ground state, can
then be obtained by �nding frequencies of the time-dependent perturbation where the density response function
has a pole. By considering only the linear density response, it is then possible to �nd a non-Hermitian eigenvalue
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problem whose solutions are the poles of the response function. This eigenvalue problem can be written as:(
A B
B A

) (
XI

YI

)
= EI

(
1 0
0 −1

) (
XI

YI

)
. (1)

Here, the matrices A and B are called orbital rotation Hessians [87], and depend on orbital energy di�erences and
integrals over the two-electron Coulomb and exchange operators. Once a solution to (1) has been found, in addition
to the excitation energy EI one also obtains the response vector (XI ,YI ). This vector is similar to the CI vector
from a con�guration interaction or multi-reference calculation. The vector XI corresponds to excitations from
occupied to virtual orbitals, e.g., vector element X I

ia is the coe�cient corresponding to an excitation from an occupied
orbital i to a virtual orbital a. The vector YI corresponds to “de-excitations” from virtual into occupied orbitals.
These de-excitations, which follow from the derivation of LR TD-DFT equations, do not possess a clear physical
meaning [40] and are usually dismissed in the discussions. Ignoring the de-excitations in equation (1) is known as
the Tamm-Damco� approximation (TDA) [88]:

AXI = EIXI . (2)

The TDA is often applied in TD-DFT for computational e�ciency reasons, as it replaces a non-Hermitian eigenvalue
problem by a Hermitian eigenvalue problem of half the size. Even more, it has been pointed out that the TDA
sometimes leads to improved results by avoiding triplet instabilities for range-separated hybrid functionals [89]. For
these reasons, we will restrict ourselves to the TDA in the following. More information regarding wave function
analysis for full TD-DFT can be found in Ref. [90] and regarding mathematical considerations relevant to de-excitations
in Ref. [91].

One of the complexes considered in this tutorial is [Ir(ppy)3] (ppy=2-phenylpyridyl), which is a strongly phospho-
rescent compound used in OLED design [92] (for a more comprehensive introduction of this complex, see Section 4.1).
Its frontier orbitals, i.e., the ones mainly involved in the low-lying excitations, are depicted in Figure 1. The three
highest occupied orbitals (Ha , He1, He2) are combinations of metal 5d orbitals and ligand π orbitals, whereas the three
lowest unoccupied orbitals (La , Le1, Le2) are linear combinations of ligand π ∗ orbitals with little metal contributions.
These frontier orbitals are characteristic for many pseudo-octahedral complexes with D3 or C3 symmetry [16]. Note,
however, that although our calculations used a symmetric geometry, the calculations were performed without
symmetry—as is practiced often.

In order to perform an analysis of the computed excited state, the excitation vector XI is needed. Most commonly,
the excited states are analyzed by identifying the largest contributions X I

ia to the excitation vector. By manual
inspection, the orbitals i and a are then assigned to some orbital class—e.g., metal-centered or ligand centered. Then,
if i is a metal-centered orbital and a is a ligand-centered orbital, the electronic state is characterized as an MLCT
state. In Table 1, we compile the excitation energies, symmetries, and leading excitations for the �rst six triplet states
of [Ir(ppy)3]. As can be seen, the lowest six triplet states are very close in energy (within 0.3 eV), and due to the
symmetry of the molecule, are grouped into (near-)degenerate sets of states. The states T4 to T6 are actually so close
in energy that it is not possible to identify which is the A state and which are the E states, and are thus labeled as a
linear combination of both. Table 1 lists all the contributions with a weight |X I

ia |2 of at least 0.15. These contributions
represent at least 58% of each of the shown states and it is thus possible to provide a qualitative state assignment
based on this table. Because the occupied orbitals are mixed metal-/ligand-centered and the virtual orbitals are mostly
ligand-centered, it can be said that the six triplet states all have mixed MLCT, IL, and LLCT character.

Beyond this basic qualitative �nding, it is hard to gain further knowledge from the coe�cients in Table 1. It is
di�cult to discern any di�erences between these six states, as they are complicated linear combinations of di�erent
excitations. Moreover, it is very hard to answer questions like “Are the ligand-centered contributions combinations
of local excitations (IL) or charge transfer (LLCT) excitations?” It is also not clear from Table 1 whether the states
shown are actually multi-con�gurational states, or whether an orbital representation could be found where a single
con�guration is su�cient to describe one of the states.

One of the basic problems of the above analysis is that, when expressed in the basis of the canonical Kohn-Sham
orbitals, the excited states are often linear combinations of many di�erent excitations with similar weights—as
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Figure 1: Depiction of the frontier canonical orbitals for [Ir(ppy)3]. The �gure also de�nes the orbital labels Ha , He1, He2 for the highest occupied
orbitals, and La , Le1, Le2 for the lowest unoccupied orbitals. (TDA-B3LYP/TZP-DZ(P), COSMO(water); see Appendix A for full computational
details)

Table 1: Excitation energies (E), symmetry (Sym.), and leading excitations with coe�cients Xia for the six lowest triplet states of [Ir(ppy)3].
(TDA-B3LYP/TZP-DZ(P), COSMO(water))

E (eV) Sym. Leading excitations
T1 2.89 A +0.85HaLa +0.32He1Le2 +0.32He2Le1
T2 2.93 E +0.58HaLe1 +0.49HaLe2
T3 2.93 E +0.58HaLe2 −0.49HaLe1
T4 3.17 A+E +0.48He1Le1 +0.44He2Le1 +0.41He1La
T5 3.17 A+E +0.56He2La +0.46He2Le2 −0.42He2Le1
T6 3.17 A+E −0.56He1La +0.53He1Le2 +0.45HaLe2

exempli�ed in Table 1. In such a case, the actual state character is determined by the (non-trivial) interference
patterns between the excitations, as visible by the di�erent signs of the coe�cients in the table. In order to simplify
the interpretation, it is advantageous to seek an orbital representation which is more suitable to express the excited
states in a simple and compact form. Ideally, this representation should also be method independent, because there
are subtle di�erences in the interpretation of, e.g., canonical Kohn-Sham orbitals versus Hartree-Fock or CASSCF
orbitals, and between the response vector from TD-DFT versus the con�guration interaction vectors from wave
function-based methods [40, 93].

To this end, in the following we will heavily use the one-electron transition density matrix (1TDM) TI J , whose
elements in general can be de�ned as [71]:

T I J
r s =

〈
ΨI

��â†r âs ��ΨJ 〉 . (3)

Here, â†r is the creation operator for orbital ϕr , âs the annihilation operator for orbital ϕs , and I and J are two
excited state indices. We will mostly consider transition density matrices between the ground state and an excited
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state I , which we write as TI . Such a 1TDM is closely related to physical observables like the transition dipole
moment [71], showing that the 1TDM is a suitable basis for a more physically meaningful analysis of excited-state
character. For methods which allow describing higher excitations (multi-reference, quadratic response, etc) there
will also be two-electron and higher transition density matrices, but these contribute only little for states which are
predominantly described as single-excitations.

In TD-DFT, which employs a single-determinant ground state, the 1TDM TI is directly related to the response
vector. Within the TDA, the following assignment is made:

T I
ia = X I

ia , (4)

where i runs over the occupied orbitals and a over the virtual ones.

With the 1TDM de�ned, we can now introduce the concept of natural transition orbitals (NTOs) [70, 94, 95].
These are obtained by a singular value decomposition of the 1TDM:

TI = VI
©­­«
λI1

λI2
. . .

ª®®¬WI†. (5)

Analogously, it can be stated that the unitary matrices VI and WI contain the eigenvectors of the hole and particle
density matrices (TITI† and TI†TI , respectively) [71]. From the matrix VI one can construct the NTOs of the excitation
hole by summing over the appropriate occupied orbitals

ψ h, I
p (r) =

∑
i ∈occ

V I
ipϕi (r) (6)

and from the matrix WI the NTOs of the excited electron by summing over the virtual orbitals

ψ e, I
p (r) =

∑
a∈virt

W I
apϕa(r). (7)

The value (λIp )2 then gives the weight of the excitationψ h, I
p → ψ e, I

p in the excited state I . The strength of the NTO
transformation is that usually, only a few (λIp )2 are signi�cantly larger than zero, and by considering only those few
excitations, a very compact representation for the excited state can be obtained. The number of signi�cant NTOs
contributing to a given state can be quanti�ed by the NTO participation ratio (PR) [70]:

PRI
NTO =

(∑
p (λIp )2

)2∑
p (λIp )4

, (8)

which is a measure of how many single-particle excitations are necessary to describe a state and, thus, its multi-
con�gurational character. This value is always greater or equal to one. PRNTO has an important practical implication,
i.e., it shows how many orbitals should be visualized. More importantly, the number of non-vanishing NTO
amplitudes have a clear physical meaning that can be interpreted in the context of static electron correlation [96],
exciton formation [70, 97], and entanglement between the electron and hole quasiparticles [98]. The PRNTO value has
been applied practically to quantify charge resonance interactions during excimer formation of organic molecules
[70, 99] and to understand the intermediate states involved in two-photon absorption [100].

In Figure 2, we plot the most important NTOs for the six triplet states discussed above. The NTOs represent the
excitations more compactly than the canonical orbitals did, as can be seen from the sums of weights. Indeed, for all
states, the shown NTOs represent at least 90%, which is much better than the 58% represented in Table 1. Whereas
each individual state can be represented with few NTO pairs, it is now necessary to plot (generally di�erent) NTOs
for each state, so that a large number of NTOs will be needed to represent a large set of excited states.
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0.74 0.12 0.12

T1 2.89 eV (1.73)

0.67 0.31

T2 2.93 eV (1.82)

0.70 0.20

T3 2.93 eV (1.81)

0.94

T4 3.17 eV (1.11)

0.91

T5 3.17 eV (1.17)

0.93

T6 3.17 eV (1.13)

Figure 2: Depiction of the leading NTO pairs for the �rst six triplet states of [Ir(ppy)3], with the weights of the NTO pairs given above the arrows.
The labels under each set of NTOs indicates the shown state, the excitation energy, and the PRNTO in parenthesis. (TDA-B3LYP/TZP-DZ(P),
COSMO(water))

The analysis of the NTOs in Figure 2 allows obtaining qualitative insight into the state characters beyond the
insight gained from Table 1. First, PRNTO allows judging the multi-con�gurational character of the states, showing
that the �rst three triplets are indeed multi-con�gurational—as could be anticipated above. On the contrary, T4,
T5, and T6 are identi�ed as virtually single-con�gurational states—a fact that could hardly be expected from the
canonical orbital representation. Moreover, in the NTO basis we can qualitatively distinguish between IL and LLCT
transitions. T1,T2, andT3 seem to mostly involve local IL excitations, besides the MLCT character. This is unexpected,
since in the canonical representation, T2 and T3 were mixtures of excitations from the Ha orbital, which is fully
delocalized. The higher triplets constitute a set of LLCT states—again with some MLCT admixture—where the
electron is excited counterclockwise (in the used orientation and for the employed enantiomer of [Ir(ppy)3]) from
one ligand to another one. Hence, the six triplet states can be described as a set of three MLCT/IL states and three
higher-energy LLCT/MLCT states.

On a side note, T4, T5, and T6 do not re�ect the proper symmetry of the molecule because our calculation did not
consider explicit symmetry. This symmetry breaking can be explained by the fact that the three states are nearly
degenerate and therefore can mix. Now, apparently, the computation converged to three states where the excitations
are clearly localized. Oppositely, one can expect that the properly symmetrized states would be more delocalized,
forming one A state which is a positive linear combination of the three states, and a pair of E states. Nevertheless,
these symmetrized states would still retain their counterclockwise CT characters, even though this might not be
immediately visible in the NTO representation of the symmetrized states. This discussion shows that in this complex
the states have a tendency to easily break symmetry.

Whereas the NTOs contain the full information of the initial TDA computation, there are also ways to reduce
this information and represent the excitation in an even more compact way. A weighted sum of the electron and hole
NTOs leads to the electron and hole densities [71]

ρIh(r) =
∑
p

(λIp )2
(
ψ h, I
p (r)

)2
(9)

ρIe (r) =
∑
p

(λIp )2
(
ψ e, I
p (r)

)2
(10)

also termed (unrelaxed) attachment and detachment densities [101]. The di�erence between these two leads to the
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unrelaxed di�erence density
ρIdi� (r) = ρIh(r) − ρIe (r), (11)

while the sum
ρIspin(r) = ρIh(r) + ρIe (r), (12)

corresponds to the spin-density in a high-spin triplet computation.

If one goes beyond the TDA, e.g., with full TD-DFT, wave function based methods, or by including orbital
relaxations as present in the theory of analytical energy gradients [102], these simple rules connecting the NTOs
with the di�erence and spin densities no longer apply and a wealth of new information can be extracted from the
deviations of these quantities, provided suitable analysis methods are chosen [71]. In particular, a comparison of the
NTOs with the eigenvectors of the relaxed di�erence density matrix—termed natural di�erence orbitals—proved to be
very useful for analyzing secondary orbital relaxation e�ects accompanying the main excitation process [103]. It was
shown that these e�ects were particularly pronounced for the MLCT states of a small model iridium complex, where
the occupied d-orbitals contracted after one electron was removed [81].

3. Quanti�cation of excited state localization and charge transfer

In the following section, we show how it is possible to identify state characters based on the computation of
descriptors, while avoiding entirely the visual inspection of orbitals. As alluded to in the introduction, a numerical
characterization of excited states promises several advantages: it allows avoiding laborious manual work and can be
automatized for a large number of excited states; it is objective, reproducible, and more precise; it allows spotting
small di�erences, trends, or continuous changes; and �nally, can reveal physics which cannot be represented through
orbital pictures.

One such descriptor, the PRNTO value of equation (8), was already introduced above. In the following, we will
introduce another kind of descriptor, the charge transfer number [70, 104], which will be our main tool for the
remainder of the text. The following subsections will �rst generally outline the underlying theory and show examples
for the most common case of non-relativistic (or scalar relativistic) wave functions. Subsequently, we will present
the �rst application of the same methodology to spin-orbit coupled relativistic states. Finally, motivated by the fact
that in certain situations the di�erent computed charge transfer numbers are strongly correlated, we present a novel
clustering ansatz which allows automatically dividing a molecule into chromophoric subunits.

3.1. Charge transfer numbers

Excited states are usually discussed in terms of where the excitation originates—i.e., where the excitation hole is
localized—and where it goes to—i.e., where the excited electron is localized. For example, the excitation in an MLCT
state originates at a metal orbital and goes to one or more ligands; an IL state originates at a ligand and goes to a
di�erent orbital at the same ligand. The purpose of the charge transfer numbers is to formalize this concept. Again,
the 1TDM TI is considered as the central object, but instead of visualizing it, we partition it among di�erent fragments
of the molecular system under study. Mathematically speaking, the fragments are mutually disjoint subsets of the
atoms of the molecule. Usually, the fragments are de�ned by chemical intuition, e.g., each ligand of a complex is
treated as a separate fragment, but later on we will also discuss strategies for automatic fragmentation.

The �rst step is a transformation of the 1TDM from the MO basis to the atomic orbital (AO) basis

T̄I = CTICT, (13)

where C is the MO-coe�cient matrix. The square of an element of this matrix, (T̄ I
µν )2, measures the contribution

of an excitation originating on the atomic orbital (AO) χµ and going to the AO χν . The charge transfer number
ΩI
AB is now intended to measure the total contributions of excitations that originate at any AO centered on an atom

of fragment A and go to any AO on fragment B. In a naive implementation, one could simply sum over all (T̄ I
µν )2
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elements where µ lies on A and ν lies on B. However, for a rigorous computation it is necessary to apply a population
analysis scheme that takes into account the non-orthogonality of the AOs. There is no unique way of dividing the
density among atoms and a number of di�erent population analysis schemes have been devised [105]. Two such
analysis schemes were adapted for analyzing the 1TDM [71, 106] and implemented in TheoDORE. First, it is possible
[71] to partition the 1TDM in the spirit of a Mulliken analysis

ΩI
AB =

1
2

∑
µ ∈A

∑
ν ∈B

[
(T̄I S)µν (ST̄I )µν + T̄ I

µν (ST̄I S)µν
]
, (14)

where S is the AO overlap matrix, yielding an equation that is related to Mayer’s bond order [107]. Alternatively, a
Löwdin orthogonalization can be applied to T̄I [106], leading to the orthogonal matrix

T̃I = S1/2T̄I S1/2, (15)

which can be directly used for summation

ΩI
AB =

∑
µ ∈A

∑
ν ∈B
(T̃ I
µν )2. (16)

In the implementation used here, the Löwdin orthogonalization proceeds by using the following identity

T̃I = S1/2T̄I S1/2 = (PQT)TI (PQT)T (17)

where P and Q are the matrices containing the left and right singular vectors of the MO-coe�cient matrix C. It is,
thus, possible to evaluate Equation (16) without knowledge of the AO overlap matrix S, and a similar consideration
[70] also applies for Equation (14). Whereas Equation (14) was initially implemented in TheoDORE, it is advisable to
rather apply the Löwdin style partitioning of Equation (16) since it is computationally more e�cient and in most
cases numerically more stable (i.e., the ΩI

AB values are strictly positive, which is not necessarily the case for the
Mulliken partitioning). It is in principle possible to extend this formalism to other, more involved, population analysis
schemes, but this has not been attempted yet.

Finally, the quantity
ΩI =

∑
AB

ΩI
AB =

∑
r s

(T I
r s )2 =

∑
p

(λIp )2, (18)

which is equivalent to the Frobenius norm of T (or T̃), can be de�ned [71, 108]. In the case of a normalized CIS
or TDA wave function this value is always equal to 1, whereas it is generally less than 1 for correlated ab initio
methods [103, 109]. In the latter case, the ΩI value can be applied as a method-independent measure for the single-
excitation character where ΩI = 1 corresponds to a pure singly excited state and smaller values indicate contributions
from double or higher excitations. The physical meaning of ΩI is that it allows making some statements about
transition properties of one-electron operators [108]. Speci�cally, from ΩI = 0 it follows that 〈Ψ0 |Ô (1) |ΨI 〉 = 0 for
any possible one-electron operator Ô (1), for example the dipole moment operator or a spin-orbit operator in a mean
�eld approximation.

For a system of nfrag fragments, the charge transfer number analysis produces an nfrag × nfrag matrix with all
the possible contributions. Here, the diagonal elements ΩI

AA correspond to local excitations on fragment A, while
ΩI
AB ,A , B are charge transfer contributions. The matrix elements ΩI

AB can be directly plotted in the form of a
two-dimensional matrix plot (sometimes called electron-hole pair correlation plot), as has been discussed, for example,
in Refs [79, 110–112].

Such matrix plots are shown in Figure 3 for the T1 −T6 states of [Ir(ppy)3], denoting the three ppy ligands as
L1, L2 and L3. Starting with the T1 state (Figure 3a), it is observed that the three strongest contributions (16% each)
are situated on the diagonal, corresponding to local excitations on each of the three ligands. In addition, three
contributions (13% each) are seen corresponding to Ir→L excitations. The same types of transitions are also present
for theT2 andT3 (Figure 3b-c) states with the exception that the symmetry is broken and the ligands do not contribute
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Figure 3: Matrix plots of the charge transfer numbers for the �rst six triplet states of [Ir(ppy)3]. In the plots, the magnitude of the elements of the
4 × 4 matrices are given by the color, the numbers give the numerical value (in %). The labels L1, L2, and L3 denote the three ppy ligands. The
excitation hole is plotted on the vertical axis, the excited electron on the horizontal axis. (TDA-B3LYP/TZP-DZ(P), COSMO(water))

equally to these states. The states T4 to T6 (Figures 3d-f) show distinctly di�erent plots as opposed to the �rst three
states. In these cases, only one column of the matrix shows signi�cant contributions, meaning that the excited electron
is localized on one of the ligands. The excitation hole always has its strongest contribution on Ir (46%), the second
contribution (22%) is of LLCT type, (Li →Lj , i , j), and only the third contribution (14–15%) is of IL type (Li →Li ).

While the plots shown in Figure 3 provide a compact and rigorous representation of the excitations, it is often
convenient to further compress the information. For this purpose, for each state partial sums are computed over all
the contributions that correspond to one of the �ve classes of TMC excited states: MC, MLCT, LMCT, IL, and LLCT.
Here, the Ir→Ir matrix element gives the MC contribution to the state, the sum of the Ir→Li elements gives the
MLCT contribution, and so on. This generic partitioning of the charge transfer number matrix is shown in Figure 4.
It can be applied to homoleptic complexes, or more generally to TMCs where all ligands are treated as equivalent.
Instead of plotting the whole matrix of ΩI

AB , it is now possible to identify one or two dominant contributions and
represent them in tabular form. Naturally, the downside of this compression is that some information is lost—in this
case the information about excitation localization on the individual ligands. Hence, one should carefully decide on
the degree of data compression depending on the application.

For the six triplets of [Ir(ppy)3], the results of this analysis are shown in Table 2. It can be readily seen that the
six states form two strongly related sets of states: T1, T2, and T3 have almost identical state character contributions,
and the three other states likewise. Furthermore, it can be argued that the obtained numeric values provide more
insight than that gained above from the NTOs. Accordingly, it can be seen that the three lowest-lying triplet states
are predominantly ligand-centered, with around 50% IL character, and only around 35% MLCT. In contrast, the higher
states are of predominant MLCT (50%) character and possess LLCT character as a secondary contribution (31%).

The information contained in the table can also be depicted in compact form, as shown in Figure 5, where the
energy is depicted with horizontal bars, the main state character is indicated by the color of these horizontal bars,
and the contributions to the state character are shown in stacked bar plots. The advantage of this �gure is that it can
be easily scaled to a relatively large number of states by simply making the bars narrower. For instance, 30–50 states
can be depicted in a �gure of similar size (as will be shown below), while a table conveying the same information for
50 states would probably take more than half a page. Moreover, spotting trends or patterns within the table would be
much more cumbersome than glancing at the colors of the �gure.
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Figure 4: Division of the charge transfer matrix of [Ir(ppy)3] into the �ve text-book classes of TMC excited states.

Table 2: Excitation energies (E), symmetry (Sym.), and most important state character contributions for the six lowest triplet states of [Ir(ppy)3].
(TDA-B3LYP/TZP-DZ(P), COSMO(water))

E (eV) Sym. State character
T1 2.89 A 49% IL 38% MLCT
T2 2.93 E 53% IL 35% MLCT
T3 2.93 E 53% IL 35% MLCT
T4 3.17 A+E 49% MLCT 31% LLCT
T5 3.17 A+E 50% MLCT 31% LLCT
T6 3.17 A+E 50% MLCT 32% LLCT

In summary, the presented protocol enables a completely automatized, quantitative, and reproducible assignment
of state characters in TMCs. In Sections 4.1 to 4.5 we will show that the methodology can be applied bene�cially in
cases where a larger number of states are to be analyzed, where detailed understanding of ligand e�ects is needed, or
to rationalize the e�ects of geometric modi�cations.

3.2. Charge transfer numbers for spin-mixed states

In TMCs, SOC is very relevant due to the large nuclear charge of the metal atom. SOC is often included in the
electronic Hamiltonian as a perturbation [41, 113–116]

Ĥ el = ĤMCH + Ĥ SOC, (19)
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Figure 5: Decomposition of the charge transfer number matrix of [Ir(ppy)3] into the �ve text-book classes of TMC excited states. (TDA-B3LYP/TZP-
DZ(P), COSMO(water))

12



where ĤMCH is the molecular Coulomb Hamiltonian (MCH) [117], which contains the (scalar relativistic) kinetic energy
and Coulomb potential energies of the electrons. In practice, one usually �rst computes a number of eigenstates
of the MCH (ΨMCH; also called spin-free states), e.g., singlets and triplets, and subsequently evaluates the SOC
matrix elements within this set of states. The spin-orbit-coupled states (or diagonal states) can then be obtained in
a perturbative fashion by a diagonalization of the Hamiltonian matrix, where the diagonal elements contain the
energies of the MCH states, and the o�-diagonal elements are the SOCs. The approximation of this step is neglecting
the SOC matrix elements with all higher states not computed in the �rst step. The diagonalization of HMCH—with
elements HMCH

I J = 〈ΨMCH
I |Ĥ el |ΨMCH

J 〉—can be written as

Hdiag = U†HMCHU, (20)

where U is the eigenvector matrix of HMCH. The matrix U allows reconstructing the wave function of the diagonal
state in terms of the MCH states:

|Ψdiag
α 〉 =

∑
I

|ΨMCH
I 〉UI α . (21)

Assuming that the ground state Ψ0 is not a�ected by this transformation, which is often a good approximation, the
1TDM between the ground state and an excited diagonal state is given by

T αrs =
〈
Ψ0

���â†r âs ���Ψdiag
α

〉
, (22)

which after insertion of Equation (21) reads

T αrs =
∑
I

〈
Ψ0

��â†r âs ��ΨMCH
I

〉
UI α =

∑
I

T I
r sUI α . (23)

Insertion into Equation (17) shows that the same relations also holds for the orthogonalized matrices, i.e.,

T̃ αrs =
∑
I

T̃ I
r sUI α (24)

and Equation (16) �nally leads to

Ωα
AB =

∑
I

∑
J

UI αUJ α

∑
µ ∈A

∑
ν ∈B

T̃ I
µνT̃

J
µν =

∑
I

∑
J

UI αUJ αΩ
I−J
AB . (25)

Here, the diagonal elements ΩI−I
AB are equivalent to the charge transfer numbers ΩI

AB of the MCH states, as de�ned
above, and the o�-diagonal ΩI−J

AB terms are computed in an analogous fashion using the 1TDMs of two di�erent
states. Importantly, the evaluation of Equation (25) does not require any signi�cant additional computational e�ort
when compared to the MCH case, since all required T̃I matrices are already available. This transformation has been
newly implemented into TheoDORE in the course of this work and we will illustrate its potential below.

In order to visualize the resulting data, we �rst consider a plot of the energies versus oscillator strengths. Figure 6
shows these two quantities for the lowest excited states of [Ir(ppy)3]. The spin-pure (singlet and triplet) states in the
MCH representation are denoted by open rings and the spin-mixed states in the diagonal representation by �lled
circles. As the diagonal states do not have a well-de�ned total spin value, we indicate the total spin expectation value
of these states by color. Additionally, we draw arrows between the MCH and diagonal states, in such a way that it can
be discerned which MCH states contribute to which diagonal states. In that way, the plot can be used to analyze the
electronic structure of the diagonal states in a visual way. At �rst glance, the complexity of the diagonal states can be
appreciated, i.e., in most cases the diagonal states are a linear combination of a large number of di�erent MCH states.

The reason to show energies versus oscillator strengths is that for [Ir(ppy)3] and related complexes, the character
of the lowest diagonal triplet states (the sublevels of theT1) is decisive for its phosphorescence properties. Ideally, the
lowest triplet sublevel should have signi�cant oscillator strength in order to facilitate fast and e�cient phosphorescent
decay. It has been shown by theoretical arguments [16, 118] that for pseudo-octahedral complexes of trigonal
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Figure 7: Spin-orbit coupling decomposition plot, showing energies and MLCT character of the few lowest excited states of [Ir(ppy)3]. The
meaning of the colors and arrows is the same as in Figure 6. (TDA-B3LYP/TZP-DZ(P), COSMO(water))

symmetry, the lowest triplet sublevel is forbidden from decaying radiatively while the higher sublevels are allowed
to phosphoresce. This result is recovered in our calculations, as can be seen in Figure 6, where the lowest diagonal
state (labeled “X1”) has an oscillator strength of zero. The plot also shows that some of the other sublevels of T1,
T2, and T3 indeed acquire small oscillator strengths. Figure 6 also reveals that the intensity of these states does not
originate from the lowest singlet states S1 − S3, as one might have assumed initially, but it actually derives from the
relatively bright S4 and S5 state pair (not shown due to scale). A possible explanation for this �nding is given by
the general properties of the spin-orbit operator which govern the magnitude of the SOCs [114]. Accordingly, in
a TMC one can expect very large SOCs between a singlet I and a triplet J if the transition I → J is a one-electron
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excitation localized on the metal atom. For example, SOCs will be large if I and J are two MLCT states involving
di�erent d orbitals and the same π ∗ orbital. Now, S1 − S3 and T1 −T3 all constitute excitations out of the Ha orbital
(see Figure 1), leading to rather small SOCs between these states, and therefore to only minor intensity borrowing.

In Figure 7, we show the results of a charge transfer number analysis including SOC. The �gure is analogous to
the previous one, but it plots the MLCT contribution against the energy of the states. The most interesting aspect of
Figure 7 is to see which states exchange MLCT character and how the energy is a�ected by that. For the low-energy
group of triplet states (T1,T2, andT3), it can be seen that when they spin-orbit couple to the higher states, they acquire
additional MLCT contributions, whereas the higher states (speci�cally, T4−6) lose MLCT contributions. Another
observation is that states with less MLCT character (on the bottom) do not get shifted in energy as much as the
states with larger MLCT contributions (on the top). This is a well-known e�ect [15, 16], but here it is plotted in a
comprehensive way. Finally, it can be seen that, in general, the MCH states show more extreme positions on the
MLCT scale, i.e., the MCH states can be found at very low and very high MLCT percentages, whereas the diagonal
states are generally more “average”.

3.3. Correlations between charge transfer numbers

In the case of multiple excited states, the charge transfer numbers constitute a three-dimensionalnstates×nfrag×nfrag
array. With such a data set, it is possible that some of the charge transfer numbers are linearly correlated with
each other, i.e., if one charge transfer number is large for any state, another number will also be large for that state,
and vice versa. Such correlations might be due to di�erent reasons, for example due to the fact that excitations
between MOs are delocalized over multiple fragments, or due to simultaneous, coupled excitations involving multiple
fragments.

In order to illustrate the presence of such correlations, we start by scrutinizing the excited states of the complex
[Re(Cl)(CO)3(bipy)] (bipy=2,2’-bipyridine); this rhenium carbonyl diimine complex will be more thoroughly examined
later in section 4.5. For now, it is su�cient to mention that the excited-state characters of this and related complexes
are discussed in the literature due to the strong mixing between Re→L and (CO)3→L excitations [29, 57], and in the
case of halogeno-complexes also X→L, with X being the halogen and L the diimine ligand (e.g., bipy) [119, 120].

This strong mixing is clearly appreciated in Figure 8, which displays charge transfer numbers for the �rst
20 singlets and �rst 20 triplets of [Re(Cl)(CO)3(bipy)]. For the charge transfer analysis we have divided the molecule
into four fragments: (i) Re, (ii) Cl, (iii) (CO)3, and (iv) bipy. The resulting types of excitations are represented in
di�erent colors. As can be seen, 31 out of the 40 shown states are a mixture of three excitation types: Re→bipy (in
light gray), Cl→bipy (in light red), and (CO)3→bipy (in light blue). Moreover, it can also be seen that the three types
are correlated, in the sense that if one is small, the others tend to be small, too. This is particularly notable for the
Re→bipy and (CO)3→bipy contributions.

These correlations are best identi�ed in a scatter plot like shown in Figure 9, which plots pairs of charge transfer
numbers (i.e., contributions to the state characters) for all states. In (a) it can be seen that the Re→bipy and (CO)3
→bipy contributions are very well linearly correlated, with a (Pearson) correlation coe�cient of r = 0.98. As a
contrasting example, in (b) one can see that Re→bipy and Cl→bipy are not correlated at all; the correlation coe�cient
here is r = −0.14. Other pairs of charge transfer numbers are also correlated in a similar manner (not shown), e.g.,
Re→Cl with (CO)3→Cl, or Re→Re with (CO)3→Re, which suggests that the fragments Re and (CO)3 are themselves
correlated.

The correlation between the di�erent charge transfer numbers shows that the choice of the fragments is not
necessary straightforward. Because the fragments Re and (CO)3 are almost perfectly correlated, no signi�cant
information is gained by computing their charge transfer numbers separately. Instead, one could merge the two
fragments into a Re(CO)3 unit, keeping all essential information, while removing redundant information by reducing
the total number of fragments for this molecule from four to three (i.e., Re(CO)3, Cl, and bipy). Besides achieving
a reduction of data, the example above shows that splitting Re(CO)3 into two fragments is not adequate from a
chemical viewpoint. It is well known that metal carbonyls have strongly covalent metal-carbon bonds and signi�cant
backbonding from metal d orbitals to CO π ∗ orbitals. This bonding situation leads to orbitals which are delocalized
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over the metal and the carbonyls, such that excitations always involve both parts of the molecule. What is exceptional
in the previous correlation analysis is that it reveals these delocalized excitations from the physically well de�ned
1TDM alone, without inspecting any single orbital.

Based on the above reasoning, the correlation between di�erent fragments can be used as a measure to decide
how to choose the fragments in a charge transfer analysis. In general, one would like to form fragments whose
charge transfer numbers do not signi�cantly correlate, in order to maximize the amount of information contained.
This is especially interesting for situations where the choice of fragments is not immediately obvious, or where the
chemically motivated, intuitive fragmentation might not be optimal.

Here, we propose a new scheme which �nds correlations between charge transfer numbers from any given
fragmentation, and suggests how these fragments could be combined to form a smaller set of fragments for further
consideration. This new scheme consists of three steps: (i) compute the full correlation matrix between all fragments,
(ii) perform a hierarchical clustering [121, 122] based on the correlation matrix, and (iii) cut the cluster hierarchy at a
desired level to learn which fragments could be merged.

For this scheme, we �rst need a way to quantify the correlation between fragments. This has to be distinguished
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from the correlations above, which were between pairs of charge transfer numbers. The di�erence is in the fact that
each fragment is involved in multiple charge transfer numbers. To �nd correlations between fragments, we propose
the following. To compute the correlation between fragments A and B, we need to consider all excitations A→ X
and B → X , for all fragments X ; in this way, we can �nd whether the holes on A and B are correlated. This leads to
the following equation for the hole covariance matrix Vh:

V h
AB =

1
Nstates

∑
X

∑
I

ΩI
AXΩI

BX −
1

N 2
states

∑
X

(∑
I

ΩI
AX

) (∑
I

ΩI
BX

)
, (26)

which is more precisely the covariance matrix of the hole, summed over all possible electron positions X . Here, index
I runs over the excited states included in the statistical analysis, and A, B, and X run over the atomic fragments. The
matrix elementV h

AB describes whether fragments A and B tend to simultaneously release electron density to the same
acceptor fragment during excitation.

Likewise, for the electron correlation between A and B, we need to look at all excitations X → A and X → B, for
all fragments X . This gives rise to a similar equation for Ve, just with the following index replacements: AX ⇒ XA
and BX ⇒ XB. The matrix element V e

AB then describes whether A and B tend to simultaneously receive part of the
excited electron from the same donor fragment.

By normalization, one can obtain the hole correlation matrix:

Ch
AB =

V h
AB√

V h
AAV

h
BB

, (27)

which contains the Pearson correlation coe�cients (called r above) which measure the linear correlations between
all pairs of fragments A and B. The electron correlation matrix Ce can be computed analogously.

Based on these two matrices, in principle one could �nd if any of the fragments behave identically in all excited
states (Ch

AB = 1 or Ce
AB = 1), and one could rede�ne these two fragments as a single one. However, in general, it is

not trivial to �nd such pairs, and a manual inspection of the correlation matrices might be subjective and ine�cient.
Instead, we propose to employ hierarchical clustering analysis to �nd the groups of correlated fragments. In order to
do this, we need to de�ne a metric, which allows converting the correlation matrices into distance matrices:

Rh
AB =

√
1
2

(
1 −Ch

AB

)
, (28)

and analogously for the electron distance matrix Re. If the correlation coe�cient CAB is 1, then the distance RAB
will be zero, and for smaller correlation coe�cients, the distance will increase. The usage of the square root in
the de�nition ensures that the computed distances follow the triangular inequality [123], which is helpful for the
clustering step. Basically, it ensures that if (i) A and B have a small distance, and (ii) B and C have a small distance,
then (iii) A and C also have a su�ciently small distance.

With the distance matrix at hand, we can now carry out the hierarchical clustering algorithm. We employ the
common agglomerative algorithm, where initially, all fragments are separate clusters and are merged sequentially,
until only one cluster remains. A description of the algorithm and further details are given in the Computational
Details section in appendix A.

Figure 10 shows an example of such a hierarchical clustering analysis, based on the data presented for [Re(Cl)(CO)3
(bipy)] in Figure 8. The �gure contains three parts: (i) a depiction of the molecular geometry, with the fragmentation
indicated by the numbering of the atoms, (ii) a matrix plot of the correlation matrix of the excitation hole Ch, and
(iii), the dendrogram which presents the result of the hierarchical clustering step. In the dendrogram, it is shown how
the six fragments are subsequently merged to yield intermediate clusters which eventually are all merged to a single
system. Importantly, the horizontal (to the left) axis depicts the r value between the merged clusters. For example,
fragments 4 and 5 (the COeq fragments) have a correlation coe�cient of about 0.99 (most likely due to symmetry),
whereas the value for fragments 2 and 3 is about 0.75. Moreover, the correlation coe�cient between fragment 1 (Re)
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Figure 10: Example of the hierarchical clustering of [Re(Cl)(CO)3(bipy)] using the correlations between the excitation hole of all fragments. The
de�nition of the six fragments is shown on the top, where fragment 1 is Re, 2 is Cl, 3/4/5 are the three CO molecules, and 6 is bipy. The bottom
part shows the correlation matrix Ch as a color-coded matrix plot. Next to the matrix is the dendrogram showing the clustering of the matrix. The
black vertical line divides this dendrogram, thus forming the three clusters (blue, green, and gray), which are also indicated in the molecular
geometry plot. (TDA-B3LYP/TZP-DZ(P), gas phase)

and cluster 4+5 (COeq)2 is approximately 0.85. The larger clusters 1+4+5 (Re(CO)2), 2+3 (COCl), and 6 (bipy) are not
correlated at all, with values which are slightly negative. This indicates a negative correlation between the large
clusters, which is due to the fact that the sum of all charge transfer numbers is equal to 1 (at least in the present TDA
calculations), so that as one number grows larger, all other values tend to decrease.

Based on the dendrogram, the �nal step of the analysis is to extract a sensible clustering of the fragments. In order
to do so, one de�nes a threshold value at which the dendrogram is cut. In the given example, this threshold is indicated
by the black vertical line within the dendrogram, at a value of about r = 0.45. For this particular dendrogram, of
course choosing a value anywhere between 0.0 and 0.75 would have accomplished the same partitioning, so the
actual problem is to choose above which merger the cut should be performed. Here, we employ a heuristic which
looks for the largest gap between two subsequent mergers, and de�nes the threshold accordingly. In this way, one
can separate highly correlated clusters from uncorrelated clusters.

The clustering analysis performed in Figure 10 is quite interesting, as it proposes yet another fragmentation
scheme, di�erent from the one chosen in Figure 9. In the automatic clustering approach, it appears that the Cl atom
is mostly correlated with the trans-standing carbonyl, whereas the equatorial carbonyls are correlated with the metal.
The reason for this di�erent �nding is that Figure 9 initially considers all CO molecules as a single fragment, whereas
Figure 10 considers them separately.

Both Figures 9 and Figure 10 only consider correlation matrix for the excitation hole, but a similar analysis should
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Figure 11: Example of the full-atomic hierarchical clustering of [Re(Cl)(CO)3(bipy)] using the combined correlations of excitation hole and excited
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also indicated in the molecular geometry plot. The orange lines in the molecular geometry plot indicate which atoms correlate well with each
other. (TDA-B3LYP/TZP-DZ(P), gas phase)

be done for the excited electron, so that in the end one obtains two independent clusterings. Since this might be
inconvenient, we suggest to combine the hole and electron distance matrices in

Rcombined
MN = min

(
Re
MN ,R

h
MN

)
, (29)

and perform the clustering with this combined distance measure. In this way, one obtains only a single clustering,
which considers both hole and electron correlation. Here, the use of the minimum function ensures that two fragments
are already considered as correlated if only hole or electron are correlated.

In order to obtain an unbiased clustering of the molecule, it is best to provide as little as possible prior knowledge
about the fragmentation to the clustering procedure. This can be achieved by calculating the charge transfer
numbers for an atomic fragmentation scheme, and let the clustering procedure �gure out all correlations between
the atoms; this could be called an “ab initio” fragmentation scheme. An example is presented in Figure 11. There, the
[Re(Cl)(CO)3(bipy)] molecule is initially divided into 20 fragments—each non-hydrogen atom is treated as a separate
fragment. The hydrogens are included in the fragments of the atom to which they are bonded, because hydrogens
are not signi�cantly participating in the excitations, hence do not correlate with any other atom, and consequently
would be clustered incorrectly.

Admiringly, the automatic “ab initio” fragmentation procedure fully recovered the results of the above manual
fragmentation. It detected the bipy molecule as one independent subunit of the complex. The Re(Cl)(CO)3 moiety
was identi�ed as a second subunit, where Re and (CO)3 show tighter correlation than Cl with either of the two.
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The fact that Re(Cl)(CO)3 is a strongly correlating subunit is consistent with previous experimental �ndings in the
Ref. [120]. There, the authors used the vibrationally active pseudohalide NCS, showing that in [Re(NCS)(CO)3(NN)]
(NN=diimine) there is mixing between Re→NN and NCS→NN excitations.

The combined analysis also shows that the correlation level of Cl with Re(CO)3 is similar to some of the correlations
inside the bipy ligand. This could indicate that by subdividing the bipy into smaller fragments, one could get additional
information from the charge transfer number analysis which might allow distinguishing excited states by the location
of the excited electron on the bipy. This can be understood in the sense that there are multiple π ∗ orbitals on bipy
which can participate in the excitation process, and these orbitals show slightly di�erent localization on the di�erent
atoms.

We should note that the statistical analysis of the fragment correlations depends on the input data, and in
particular on the number and energy range of the states considered in the analysis. This is especially relevant for
systems where one state character appears only at low energies and another character only at high energies. In such
a case, including only the low-energy states in the correlation analysis is likely to lead to di�erent results than would
be obtained with the full set of states. However, when the correlation analysis is done in order to �nd a fragmentation
scheme to be used subsequently, it is best to perform the analysis with the same set of states as will be analyzed later
(e.g., in molecular dynamics). Furthermore, it might be advantageous to include computations at multiple geometries
in the correlation analysis, to remove any possible bias coming from the choice of the geometry.

4. Case studies

The quanti�cation of excited state-localization and charge transfer by means of TheoDORE analysis was already
exempli�ed in Sections 3.1 and 3.2 for [Ir(ppy)3]. In the following, the usefulness of this analysis is showcased for
�ve di�erent aspects of excited-state quantum chemistry which a�ects the state characters: (i) in�uence of nuclear
relaxation, (ii) in�uence of SOCs, (iii) in�uence of the ligand sphere, (iv) in�uence of the metal center, and (v) in�uence
of the electronic structure method.

4.1. In�uence of nuclear relaxation: nonradiative decay of [Ir(ppy)3]

Among phosphorescent emitters, organometallic Ir(III) complexes have been demonstrated to be exceptionally
useful [15, 16] due to their relatively short radiative triplet lifetime (about 1.6 µs in the high-temperature limit
[15]) and high phosphorescence quantum yields (about 90% [15]). The emission wavelength of Ir(III) complexes
signi�cantly depends on the ligands and their substituents, which can be used to control their properties [124–129].
Luminescent Ir(III) complexes can be used as well in light-emitting electrochemical cells [130] or as biological probes,
imaging reagents, and photocytotoxic agents [131].

In the past decades, a number of theoretical studies, mainly based on TD-DFT with or without inclusion of
SOCs, have been devoted to this class of complexes [81, 128, 129, 132–144]. This huge research activity has provided
important insight into the character and emissive properties of the low-lying triplet states, which are responsible for
the usefulness of the complexes.

A critical property of [Ir(ppy)3] is its very long nonradiative decay time (about 15–30 µs in the high-temperature
limit [15]), which is a prerequisite for a useful phosphorescence yield [15, 16, 118]. In this and related TMCs, one of
the most important nonradiative decay pathway leads from the T1 minimum of MLCT or IL/LLCT character to states
of MC character. Computational studies [15, 145–147] showed that these MC states involve strong elongation or
breaking of metal-ligand bonds, accompanied by the formation of a trigonal-bipyramidal metal coordination, and
hence lead to easily accessible T1/S0 crossings. These nonradiative decay routes are one of the main limitations
of blue emitters, because there the emissive states are shifted to higher energies such that they come closer to the
MC states. Hence, in this section, we investigate the contamination of the lowest triplet state by MC states along a
possible nonradiative decay route.
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Figure 12: Analysis of the nonradiative decay pathway of [Ir(ppy)3]. On the top, the four optimized geometries of [Ir(ppy)3] (S0 minimum, T1
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Figure 12 shows a potential energy pro�le for the nonradiative decay pathway of [Ir(ppy)3], from the S0 minimum
to the T1 minimum and further on to two T1/S0 crossing points. These four critical points are indicated in Figure 12
by four black dots. The S0 minimum has C3 symmetry (left-most black dot), whereas the T1 minimum is slightly
non-symmetric due to a localization of the excitation on one of the ligands, denoted here as L2. While locating the
T1/S0 crossing points, the optimization yielded two qualitatively di�erent crossing geometries. The �rst geometry
(denoted as S0/T1 XP; XP=crossing point) is not a true minimum on the crossing seam, but is signi�cant because it
is a (relatively low-energy) crossing point where the octahedral coordination of Ir is retained. Nevertheless, this
XP shows a strong elongation of the Ir-N bond to L1, and additionally an out-of-plane puckering of the N atom of
L2. The second crossing geometry corresponds to a minimum on the crossing seam (hence denoted as S0/T1 MXP;
MXP=minimum energy crossing point), and shows a trigonal bipyramidal geometry, where one of the pyridine
groups is detached from the Ir, rotated, and stacked on top of one of the other ligands.

The SOCs betweenT1 and S0 are approximately 400 cm−1 at the XP and 1100 cm−1 at the MXP, showing that both
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points might enable ISC if accessed. The energy pro�le shows that the �rst XP is approximately 1 eV above the T1
minimum. The MXP is only 0.25 eV above the T1 minimum; however, there might be a large barrier (0.7 eV according
to the linear interpolation scan, which gives a upper bound) between the XP and MXP. Hence, both crossing points
are too high in energy to be relevant even at room temperature. The barriers are also signi�cantly larger than the
ones previously reported in the literature: Treboux et al.[145] reported a barrier of 0.28 eV to reach an MC state from
the T1 minimum based on a relaxed scan, and Sajoto et al.[146] reported a value of 5000 cm−1 (0.6 eV), estimated
from computed and experimental data of related complexes. However, it should be noted that here we actually
optimized a T1/S0 crossing point (for the �rst time for this complex, to the best of our knowledge), and that the
values are therefore not necessarily comparable. Another possible reason for this discrepancy might be that our
linear-interpolation-in-internal coordinate scan leads to a too large barrier, and there is actually a lower-energy
pathway from the T1 minimum to the MXP.

In their report on the nonradiative decay pathway of [Ir (ppy)3], Treboux et al.[145] remarked “The precise
assignation of the respective characters of MLCT and LC is complicated by the presence of a strong metal-ligand
mixing in the orbitals ...” Consequently, the charge transfer analysis of TheoDORE is ideally suited to disentangle
this complicated electronic structure situation. In the bottom panel of Figure 12, we decompose the transition density
(from S0 to T1) into the ten most important contributions, using four fragments (Ir and each ppy separately) which
were found to be weakly correlated by a correlation analysis like in Section 3.3. As already seen in Section 3.1, at the
S0 minimum geometry, theT1 state is a mixture of 40% MLCT character and 50% IL character, both equally distributed
among the three ligands (L1, L2, L3). It is very interesting to note that, as soon as the trigonal symmetry is broken
(moving from the left-most data point to the right), the excitation very quickly localizes on L2, as those ligand’s bond
lengths are changed. Hence, the T1 character becomes a mixture of 30% Ir→L2 and 60% L2 →L2.

When approaching the T1/S0 XP, the wave function composition changes again, with a shift towards a larger
Ir→L2 contribution (40%). The previously large L2 →L2 contribution of the T1 minimum is changed to an equal
mixture of L1 →L2, L2 →L2, and L3 →L2. Interestingly, at this T1/S0 geometry there is almost no contribution
(3%) of MC states to the T1. Instead, the excitation can be regarded as an excitation from a partially metal-localized
orbital to an orbital on the strongly puckered pyridine unit of L2. This kind of puckering of aromatic systems is
more commonly known from smaller organic molecules, for example nucleobases [148]. An interesting ansatz for
controlling nonradiative decay in TMCs might thus be to modify the ligands such that puckering is suppressed.

The situation is notably di�erent at the MXP geometry. Here, the T1 wave function acquires a 20% contribution
of MC excitations, as well as 17% of LMCT excitations. Furthermore, the MLCT and IL/LLCT excitations become less
localized on the L2 ligand, as can be seen by the reappearance of contributions like Ir→L1 and Ir→L3. Qualitatively,
this excitation could be regarded as an MC excitation with signi�cant mixing of the d orbitals with ligand orbitals.

4.2. In�uence of spin-orbit coupling: state character mixing in [Ir(Cl)(CO)(ppy)2]

Relativistic e�ects play an important role in the photophysics of Ir(III) complexes [15, 16, 118, 137, 140, 149],
because only through these e�ects can the lowest-energy triplet states acquire any radiative decay rate. It was shown
that the mixing of close-lying low-energy MLCT and IL states is critical for the radiative decay properties [15, 16, 118]
because the MLCT states lead to enhanced SOCs and the IL states provide a large transition dipole moment. Hence,
the degree of state character mixing is very relevant for this kind of TMCs, and besides the mixed state character
observed without SOC, additional mixing is expected when spin-orbit e�ects are taken into account. The analysis of
the spin-orbit excited-state character becomes particularly challenging due to this additional mixing, as illustrated by
the TD-DFT results reported for [Ir(ppy)3] and [Ir(Cl)(CO)(ppy)2] in Ref. [140]. Here, we report a detailed analysis of
the SOC e�ects on the excited state character of [Ir(Cl)(CO)(ppy)2]. The case of this molecule is particularly instructive,
because this complex is characterized by a high density of low-lying singlet and triplet states of mixed XLCT/MLCT
character [140] and it is interesting to follow the evolution of the XLCT/MLCT (XLCT = halogen-to-ligand charge
transfer) ratio, as well as the MLCT/IL mixing, when applying SOC e�ects.

In Figure 13, we present the state characters for the �rst 60 singlet and 60 triplet states of [Ir(Cl)(CO)(ppy)2]
on the left, and the characters of the resulting 240 spin-mixed states on the right. Due to the properties of the
spin-free–spin-mixed transformation (Equation (21)), the total contribution of each state character to all states (i.e.,
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the total area �lled by each color) is the same in both panels. However, the inclusion of SOC leads to a redistribution
of the contributions among the electronic states.

The characters of the lowest states—from S1 to S4 and fromT1 toT6, which are all below 3.5 eV (above 354 nm)—are
not drastically a�ected when SOC is included. The well-separated T1 and T2 are relatively pure IL states, although
the minor MLCT and XLCT contributions are slightly enhanced when activating SOC e�ect. The subsequent states
(S1 to S4 and T3 to T6) are predominantly mixed MLCT/XLCT states, with some signi�cant IL contributions, where
MLCT character tends to be more predominant for lower states. When SOC is taken into account, the state characters
become slightly mixed, but the general picture is una�ected.

At higher energies—till states T18 and S11 at about 4.0 eV (311 nm)—SOC perturbation of the spectrum is more
important. For instance, there are two triplets (T10 andT15) with dominant MC/XMCT (halogen-to-metal CT) character.
Upon SOC mixing, the lower one of these two triplets changes order with several IL states, and the upper one shows
very strong zero �eld splitting such that the three components become interspersed by other states. Furthermore, for
T18, signi�cant de-mixing can be seen, as this state has notable MLCT and XLCT contributions (30% in total), but
after including SOC becomes a very pure LLCT (>88%) state. Among the remaining states, a clear redistribution of
the XLCT and IL contributions and a decrease of the LLCT character can be discerned.

Above S11, the analysis of the characters shows the occurrence of ppy2 →CO and ppy2 →Ir contributions, as
well as excitations towards carbonyl orbitals (Ir→CO, Cl→CO). Additionally, a large number of the states shows
major LLCT and IL contributions, whereas XLCT contributions are relatively rare in this range of states and only
reappear around T50. The e�ect of SOC at the top range of the calculated states (i.e., above T50) is mostly to make all
states more similar—as can be seen, these states are all a mixture of MLCT, XLCT, LLCT, and IL.

It goes without saying that the presented results and discussion are valid only at the Franck-Condon geometry
used for the presented excited-state calculation, and for the B3LYP functional employed, within the limitations of
TD-DFT. Multi-reference electronic structure methods—which provide more �exibility, treat charge transfer character
di�erently, and go beyond single excitations—could exhibit a di�erent picture. Some aspects of the in�uence of the
electronic structure method on the excited-state character will be discussed in Section 4.5.

Also worth noting is that a correlation analysis (analogous to the one in Figure 10) for [Ir(Cl)(CO)(ppy)2] shows
that the metal atom and the carbonyl group are relatively independent units (r ≈ 0.5). Actually, the complex shows
almost no charge transfer contributions originating at the carbonyl group. Furthermore, contributions like Cl→CO or
ppy2 →CO only appear in certain regions of the spectrum. These �ndings are in contrast to the strong metal-carbonyl
correlation of the Re(CO)3 unit discussed above for [Re(Cl)(CO)3(bipy)].

4.3. In�uence of the ligands: charge transfer analysis of [Ru(L)2(dppz)]2+ (L=bipy, phen, tap)

A very interesting class of TMCs is based on the complex [Ru(bipy)2(dppz)]2+ (bipy = 2,2’-bipyridine, dppz =
dipyrido-[3,2-a:2’,3’-c]-phenazine), which has been reported as a molecular light switch for DNA in 1990 [150]. Since
then, a huge research activity has developed in this �eld, both experimentally [151–160] and theoretically [59, 160–167].
The main goal of these studies was to understand the impact of the ligand sphere on the photophysics of [Ru(L)2(dppz-
like)]2+ molecules and to assess the character of the low-lying excited states responsible for the luminescence
properties. [Ru(bipy)2(dppz)]2+ does not luminesce in water, however, it is slightly luminescent in acetonitrile
and highly luminescent in the presence of DNA. Similarly, [Ru(phen)2(dppz)]2+ (phen = 1,10-phenanthroline) is
characterized by a rapid, nearly nonradiative decay (time constant of 250 ps) in water [151], and by a moderate
luminescence in acetonitrile that increases drastically in DNA [151, 153, 168, 169]. In contrast to the bipy- and
phen-substituted complexes, [Ru(tap)2(dppz)]2+ (tap=1,4,5,8-tetraazaphenanthrene) [170, 171] is luminescent in water
and in organic solvents, but interestingly has its luminescence quenched in DNA by electron transfer.

It has been shown, both experimentally [156, 172] and theoretically [59, 167], that the relative energies of the
low-lying triplet states of di�erent nature—ILdppz, MLCTanc (anc: ancillary ligands), MLCTprox, and MLCTdis (localized
on the dppz ligand, see Figure 14a)—govern the luminescence properties of this class of complexes. This e�ect can be
traced to the di�erent sensitivity of the di�erent states to the environment and to substituents e�ects.
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Figure 14: In (a), a general scheme of [Re(L)2(dppz)]2+ and its most relevant charge transfer states. In (b), di�erent fragmentation schemes for the
dppz ligand, where the red lines depict where proximal (top part of molecule) and distal (bottom) parts are separated. The labels next to the lines
give the correlation coe�cients between the proximal and distal parts. (TDA-B3LYP/TZP-DZP, COSMO(water))

In order to quantify the di�erent types of transitions underlying the photophysics of [Ru(bipy)2(dppz)]2+,
[Ru(phen)2 (dppz)]2+, and [Ru(tap)2(dppz)]2+, we have performed a charge transfer analysis of the 50 lowest singlet
and triplet states of each molecule. Figure 15 shows the excitation energies, oscillator strengths, and charge transfer
character for the three complexes, where they have been divided into three fragments: (i) Ru, (ii) L2, and (iii) dppz, as
suggested by automatic fragmentation and consistency with previous theoretical studies [59, 167].

For all three complexes, it can be seen that the low-energy states are dominated by MLCT states, involving either
the ancillary ligands L2 (orange) or the dppz ligand (yellow). Which ligands are involved in the lowest singlet (S1) and
lowest triplet (T1) states depends on the kind of ancillary ligands present, as bipy, phen, and tap di�er considerably in
their electron acceptor strength. Hence, for L=bipy or phen, the S1 and T1 are MLCT states towards the dppz ligand,
whereas for L=tap, these states involve the ancillary ligands. More generally, for L=bipy, the MLCT states involving
bipy tend to be higher in energy than the MLCT states involving dppz. For L=phen, both types of MLCT states are
at similar energies (nicely visible on the left of panel (b)), whereas for L=tap, the MLCT states involving dppz are
shifted upwards relative to the MLCT states involving tap.

The lowest non-MLCT singlet is only located at around 3.4 eV, making it the S15 to S20 depending on L. For
L=bipy/phen, this lowest non-MLCT state has ILdppz character, whereas for L=tap it has dppz→L2 character. For the
triplet states, the situation is di�erent, as the lowest non-MLCT state has an energy of only 2.6 eV, which is only
slightly higher than the lowest triplet state (at 2.5 eV). For all three molecules, this low-lying non-MLCT state is of
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Figure 15: Compact depiction of the results of vertical excitation calculations for [Ru(L)2(dppz)]2+ (L=bipy, phen, tap), each with 50 singlets and
50 triplets. For each molecule, the top portion of the respective panel shows the energies (horizontal bars; energy range equivalent to 275–500 nm),
oscillator strength (gray shading behind bars), and state character (color of the bars). The bottom part of each panel shows the contributions to
each state, as computed with TheoDORE. (TDA-B3LYP/TZP-DZP, COSMO(water))

ILdppz character. The low energy of this triplet is due to the fact that such ππ ∗ transitions typically have a very large
singlet-triplet splitting due to large exchange interactions.

At higher energies, a large number of IL and LLCT states appear in all three molecules. However, there are
important di�erences, which can be conveniently extracted from the �gure. For example, states of L2→L2 character
(medium green) are very rare for L=bipy, and gain importance when going to L=phen or L=tap. For L=tap, there is
actually a set of 8 nearly degenerate L2→L2 (6 IL and 2 LLCT states) states at 4.0–4.1 eV. Similarly, for L=bipy/phen,
there are some L2→dppz states (light green), whereas L=tap does not exhibit such states, only a large number of
dppz→L2 states. Of course, this di�erent behavior of the L=tap complex is related to the well-established strong π ∗
acceptor character of tap as compared to bipy or phen.
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Figure 16: Compact depiction of the results of vertical excitation calculations for [Ru(L)2(dppz)]2+ (L=bipy), each with 50 singlets and 50 triplets.
In this plot, we only show the MLCT contributions—distinguishing between the proximal and distal parts of dppz—and the di�erent ILdppz
contributions. In Figure 14a, the di�erent charge transfer types are depicted in a similar color code. (TDA-B3LYP/TZP-DZP, COSMO(water))

One very important aspect of the MLCT and IL states of the [Ru(L)2(dppz)]2+ complexes is their localization on
the dppz ligand. In particular, it was found that these complexes exhibit states which mostly involve the part of
dppz close to the metal atom (called “proximal” subunit [156]) and states which involve the other part (“distal” [156]).
Using the charge transfer numbers, one can also investigate with more detail the relationship between these two
subunits of dppz. We �rst employed the correlation analysis to quantify how much the two subunits are actually
decoupled. In order to do so, in Figure 14b we show the correlation coe�cients between the proximal and distal parts
of dppz, depending on where the two units are divided. A low correlation coe�cient indicates that the two units
are more independent, i.e., that they participate in di�erent electronic states. In that sense, the optimal division of
dppz results in a bipyridine unit (proximal) and a phenazine unit (distal), which is consistent with chemical intuition.
This �nding is the same irrespective of L (bipy, phen, or tap) and solvent (acetonitrile or water), and the same result
was also obtained for a completely di�erent dppz-containing complex, namely [Re(CO)3(py)(dppz)]+ (py=pyridine).
Furthermore, ab initio fragmentation analyzes (i.e., starting from atomic fragments) of the dppz in the Ru and Re
complexes also suggest a division in bipyridine and phenazine units.

With the optimal division of dppz established, it is possible to analyze the excited-state characters of the complexes,
shown in Figure 16 for the lowest 50 singlet and 50 triplet states of [Ru(bipy)2(dppz)]2+. Most importantly, the �gure
shows how the MLCTdppz contributions are split into Ru→prox (yellow) and Ru→dist (black) contributions, and
how the ILdppz contribution is composed. It can be seen that for MLCT states, the proximal part of dppz is the better
electron acceptor. For ILdppz states, it is found that the lower-energy states are mostly local dist→dist excitations,
whereas the higher states involve dist→prox contributions.

The presented data can also be used to generally quantify the electron donor and acceptor properties of the
proximal and distal parts, by calculating the average contribution of, e.g., the sum over all prox→any excitations.
It is found that the proximal unit participates more as acceptor, with an average contribution of 28% to all states,
compared to 17% for the distal unit. On the contrary, the distal part is a better donor (18%) than the proximal part
(12%). Using either the detailed analysis of the states or these donor/acceptor descriptors, it should be possible
to design substituted dppz ligands, where the proximal/distal contributions can be controlled to tailor the charge
transfer character of the low-lying excited states for di�erent applications, as mentioned above.

4.4. In�uence of the metal center: metal-carbonyl interaction in [M(CO)3(im)(phen)]+ (M=Mn, Tc, Re)

Metal carbonyl diimine complexes [M(CO)3(L)(NN)]n+ (NN=diimine, L=axial ligand) of group 7 (M=Mn, Tc, Re)
have received increased attention due to their electronic �exibility and the possibility to be incorporated in di�erent
environments—like polymers, proteins, or DNA. They are employed in solar cells, photocatalysis, luminescent
materials, conformational probes, radiopharmacy or diagnostic and therapeutic tools at the interfaces between
chemistry, physics, and biology [30, 173, 174].
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Figure 17: Charge transfer numbers for the �rst 50 singlets and 50 triplets of [M(CO)3(im)(phen)]+ (M=Mn, Tc, Re), based on 20 geometries
sampled from the ground state nuclear vibrational density distribution. In the left column (panels (a), (c), (e)), the correlation between the
charge transfer numbers ΩM→Y and Ω(CO)3→Y is shown, thus presenting a correlation analysis for the hole. In the right panels ((b), (d), (f)),
the correlations are shown for the electron. The r and a values in the panels are the Pearson correlation coe�cient and slope from a �t with
f (x ) = ax . (TDA-B3LYP/TZP-DZP, COSMO(water))

For rhenium derivatives [Re(CO)3(L)(NN)]n+, recent ultrafast spectroscopic experiments [175–178] and theoretical
investigations [57, 58, 60, 179–181] have provided a comprehensive picture of their optical and photophysical
properties. The imidazole (im) derivative [Re(CO)3(im)(phen)]+ is employed in the study of electron transfer in
proteins [18, 173, 182, 183]. In this particular complex, it has been often noted that the optical orbitals are delocalized
over the metal and the carbonyls, thus giving rise to mixed MLCT/LLCT states [29, 57]. As this situation is very
similar to that encountered in [Re(Cl)(CO)3(bipy)] in section 3.3, this molecule seems very suitable to challenge wave
function analysis. In particular, we would like to investigate whether this is an e�ect speci�c to the rhenium, or
whether it can be encountered in other metals of the same group. Accordingly, we shall investigate the correlation
between the metal center and the carbonyl ligands in the series [M(CO)3(im)(phen)]+ (M=Mn, Tc, Re). To this aim, we
divided the molecule into four fragments: M, (CO)3, im, and phen, and in each case we computed the �rst 50 singlet
and 50 triplet states for a set of 20 randomly generated geometries (sampled from the ground state nuclear vibrational
density distribution, see Computational Details), i.e., forming a set of 2000 excited states for each molecule.

The correlation analyses are shown in Figure 17. The left panels show the correlation between the excitations
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out of the orbitals of M or (CO)3. Very strong correlations are observed in all three cases, with Pearson correlation
coe�cients of 0.98 or above. This strong correlation is certainly not accidental, as it is found for all 2000 states at 20
di�erent geometries, with energies ranging from below 3 eV up to 6 eV, and with widely di�ering state characters.
Basically, the correlation tells that independent of the state character, the charge transfer contribution of (CO)3 is
always a �xed portion of the charge transfer contribution of the metal.

The �gure correlates four principally independent pairs of charge transfer numbers: ΩM→M with Ω(CO)3→M
(orange); ΩM→(CO)3 with Ω(CO)3→(CO)3 (red); ΩM→Im with Ω(CO)3→Im (light blue); and ΩM→Phen with Ω(CO)3→Phen (dark
blue). Accordingly, we see that not only is MLCT correlated with LLCT , but likewise is MC correlated with LMCT.
Moreover, it is interesting to see that the strong correlation is found regardless of the metal atom, although the slopes
of the correlations are di�erent. For Mn, the shown slope is very shallow (0.28), which indicates that the charge
transfer states originate mostly from the metal center, and the participation of the carbonyls is relatively weak. For
the intermediate metal Tc, the slope is already 0.38, whereas for Re it is 0.47. Hence, with increasing size of the
metal center, the participation of the carbonyls in the electronic excitations increase. In the Re complex, in all charge
transfer states, two thirds of the excited electron density comes from the metal and one third comes from the three
carbonyls.

The situation is di�erent if the correlations of excitations into the orbitals of M and (CO)3 are investigated (right
panels). In this case, the correlations are much weaker, in particular for M=Mn. This �nding indicates that the virtual
orbitals are more localized on either M or (CO)3, unlike the delocalized occupied orbitals, and that for M=Re the
virtual orbitals are mostly localized on (CO)3.

4.5. In�uence of the method: exchange- and correlation e�ects in [Re(Cl)(CO)3(bipy)]

As a �nal application of the wavefunction analysis, we investigate here the in�uence of the exchange- and
correlation functionals on the energies and state characters of the example [Re(Cl)(CO)3(bipy)]. More than often, it is
necessary to assess the quality of the results of some excited-state calculation against another excited-state calculation
using a di�erent—possibly more reliable—electronic structure method. A simple comparison of the excitation energies
is in most cases not su�cient, because the order of the states (in terms of state character) might change [184]. Hence,
wave function analysis techniques can be very useful, especially in TMCs with their very high density of states.

Excited-state calculations for [Re(Cl)(CO)3(bipy)] have been performed with TD-DFT using the functionals
PBE [185], B3LYP [186], PBE0 [187], CAMY-B3LYP [188], M06-2X [189], and ωB97 [190]). The results of these
functionals will be compared to the ones from the ab initio ADC(3) [191–193] and CASPT2(12,12) [48, 49] methods.
Details on these calculations can be found in the Computational Details section. Figure 18 compactly shows the
resulting energies of the excited states on the vertical axis, with colored horizontal bars indicating the state character.
The di�erent TD-DFT results are correlated (gray lines) using overlap calculations [74, 194].

Generally speaking, there are three classes of excited states visible in the plot: mixed MLCT/XLCT states (indicated
in shades of blue), MC states (orange; might contain admixtures of XMCT states in red), and IL states (green). Here,
we consider Re and (CO)3 as one fragment because they are correlated (see Section 3.3). The lowest excited states
with all methods are several MLCT/XLCT states, even though the energy of this class of states depends heavily
on the employed method and generally increases when more Hartree-Fock exchange is considered in the TD-DFT
calculations (from left to right). Moreover, the ratio between MLCT and XLCT depends signi�cantly on the method,
where more Hartree-Fock exchange tends to decrease the XLCT contribution; for the two ab initio methods, the
XLCT contribution is also relatively small. The MC states only appear at higher energies—around 4 eV—but their
energies are far less sensitive to the method. Only few IL states were computed, although among the triplets this
class of states is more common due to the strong triplet stabilization of the IL states.

For this particular complex, it can also be followed from Figure 18, that for TD-DFT calculations a relatively large
amount of Hartree-Fock exchange is necessary in order to obtain results consistent with the correlated ab initio
methods. Compared to the ADC(3) results, the TD-DFT computations using CAMY-B3LYP and M06-2X provided
the best results. On the contrary, the CASPT2 results are qualitatively reproduced by ωB97, although the CASPT2
calculations did not provide any MC states due to active space restrictions.
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Figure 18: Comparison of energies (y axis) and state character (color code of bars) of the low-lying states of [Re(Cl)(CO)3(bipy)] for di�erent
electronic structure methods. The diagonal black lines correlate states of the same character—obtained through overlap calculations—where the
thickness of the line is proportional to the overlap. The dotted lines serve the same purpose, but were added manually based on an inspection of
the state characters, because overlaps of the TD-DFT results with ADC(3) or CASPT2 cannot be calculated currently. (TDA-DFT/TZP-DZ(P),
ADC(3)/def2-TZVP, CASPT2/ANO-RCC, all gas phase; see appendix A for full computational details)

Without attempting to discuss which result is better (that goes beyond the intention and scope of this review) the
previous example shows the easiness in comparing results obtained from di�erent methods when using quantitative
wave function analysis.

5. Concluding remarks

We have reviewed a quantitative wave function analysis technique based on the concept of charge transfer
numbers. Charge transfer numbers are a mathematical tool based on the transition density matrix for the analysis
of excited states in terms of electronic transitions between groups of atoms. This tool—which is implemented in
the TheoDORE software package and interfaced to several quantum chemistry programs—allows quantifying the
localization and charge transfer character in an automatized way, without looking at any orbital. Charge transfer
numbers provide signi�cant advantages compared to traditional state characterization based on orbital visualization.
These advantages include e�cient analysis of large numbers of states, reproducibility, objectivity, and quanti�cation
which allows spotting chemical trends. In the case of transition metal photochemistry, where a high density of states
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and the many di�erent state characters are encountered, such a quantitative excited-state analysis is particularly
helpful.

In this contribution we also report the extension of charge transfer numbers to the case of spin-orbit-coupled
states and introduce a novel clustering approach which allows automatically partitioning the molecule into sensible
chromophoric units. This machinery was subsequently applied to various prototypical transition metal complexes,
in a number of case studies devoted to Ir(III) phosphorescent emitters, Ru(II) dipyrido-phenazine photo-switches,
and Re(I) α-diimine carbonyl complexes. The case studies demonstrated the potential of the charge transfer number
concept for investigating di�erent aspects of transition metal quantum chemistry: (i) the e�ect of modi�cation of
the nuclear geometry along a reaction coordinate, (ii) the e�ect of spin-orbit-induced mixing, (iii) the e�ect of the
ligand sphere, (iv) the e�ect of the metal center, and (v) the e�ect of the electronic structure method. The presented
case studies are primarily intended as exploratory and tutorial-like, as the results depend on the chosen underlying
electronic structure method and on the considered nuclear geometry. Nevertheless, the case studies show beautifully
the complexity of the photophysics and photochemistry of the investigated transition metal complexes.

More elaborate applications of the presented analysis tools can be envisaged. In a very general sense, automatic
wave function analysis can aid in the design of metal complexes for speci�c photonic applications, for example by
serving as an optimization target. Regarding excited-state dynamics simulations, automatic analysis can tremendously
help in tracking the electronic states of interest along the nuclear trajectory. Moreover, it might even be possible
to employ the charge transfer numbers in automatized diabatization schemes, by transforming the states such
that the descriptors change as little as possible. Applications are also imaginable in theoretical chemistry method
development. Charge transfer numbers could be used to aid in the design of sensible active spaces for multi-
con�gurational calculations, based on results from less costly TD-DFT computations. They also might help to
understand the failure of some electronic structure methods at describing charge transfer states. Finally, charge
transfer numbers could be employed to parametrize point charges for excited-state force �elds for molecular dynamics
or hybrid quantum mechanics/molecular mechanics calculations. Hence, we expect that the presented analysis
techniques will be very useful for future theoretical investigations of transition metal complexes.

Acknowledgments

S.M., F.P., and L.G. gratefully acknowledge funding from the Austrian Science Fund (FWF) within project I2883
and the University of Vienna. The Vienna Scienti�c Cluster (VSC3) is acknowledged for computational time. M.F.
and C.D. acknowledge funding from the Agence nationale de la recherche (ANR) within project ANR-15-CE29-0027
and the FRC and Labex CSC (ANR-10-LABX-0026_CSC). The authors also want to thank A. Vlček and S. Záliš for
fruitful discussions, and the inspiring COST action CM1305 (ECOSTBio).

Appendix A. Computational details

Electronic structure packages

The quantum chemical calculations were performed with ADF 2017 [83] for DFT and TD-DFT, with QChem
5.0 [84] for ADC(3) [193], and with a development version of MOLCAS 8.1 [85] for CASSCF/CASPT2 [48, 49]. The
charge transfer number analyzes were done using a development version of TheoDORE 1.5 [82]. For ADF, a newly
developed interface between TheoDORE and ADF was used (see below). Integrated analysis utilities in Q-Chem [71]
and Molcas [86] were used to preprocess the output from these programs.

Interface between TheoDORE and ADF

For the purpose of this work, a new interface between the TheoDORE program package and ADF was implemented.
This interface proceeds by reading all required information (geometries, response vectors, MO-coe�cients, locations
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of the basis functions) from the binary “TAPE21” �les produced by ADF. In the case of full TD-DFT computations
(rather than TDA), generally the right eigenvectors, i.e., X + Y (Equation (1)), are analyzed. For the purpose of
analyzing spin-orbit coupled charge transfer numbers, the spin-orbit Hamiltonian was extracted from the TAPE21 �le
and subsequently diagonalized to yield the coe�cients UI α , which were inserted into Equation (25). The described
TheoDORE–ADF interface will be made available within the next TheoDORE release along with utility scripts that
help in generating the plots shown in this work.

Hierarchical clustering

The agglomerative hierarchical clustering algorithm [121, 122] is employed to automatically analyze the correla-
tions between the fragments, which are quanti�ed with Equations (26), (27), and (28). The clustering algorithm takes
the distance matrix R as main input. In each iteration of the algorithm, the smallest value RAB (A , B) in the distance
matrix is looked up, and the two clusters A and B are subsequently merged. To do this, the columns and rows A and
B are deleted from the distance matrix, and instead a new columnC is added, holding the e�ective distances from the
just-formed cluster C = A ∪ B to all other clusters in the matrix. The e�ective distances are computed as a function
of the original distances, so in order to compute the distance RCD , one computes RCD = f ({Rxy ,x ∈ C,y ∈ D}).
Here, di�erent choices for f are possible, for example using the minimum of the distances (the algorithm is then
called single-linkage clustering), the maximum of the distances (complete-linkage clustering), or the average of the
distances (average-linkage clustering). Among these choices, complete-linkage clustering is generally reported to be
very sensitive to outliers, whereas single-linkage clustering has a tendency to yield chain-like clusters. Hence, we
employ average-linkage clustering for our purposes.

Level of theory

The single point calculation for the analysis presented in Sections 2, 3.1, and 3.2 for [Ir(ppy)3] was performed
using the geometry reported in Ref. [81], which has C3 symmetry. For the TD-DFT calculation, the following basis
sets were used: TZP for Ir, DZP for C and N, and DZ for H (denoted as “TZP-DZ(P)” in the main text). We used the
B3LYP functional and COSMO (for water, with non-equilibrium solvation with ε∞ = 1.77) to compute 30 excited
singlet states and 30 triplet states, although in Sections 2 and 3.1 only the lowest six triplets are discussed.

The calculation for the correlation analysis of the complex [Re(Cl)(CO)3(bipy)] in Section 3.3 was carried out
with the geometry reported in [180], which is of Cs symmetry. TZP for Re, DZP for C, N and Cl, and DZ for H were
used together with the B3LYP functional. The computation was done in the gas phase, and 20 singlets plus 20 triplets
were computed.

The potential energy scan of [Ir(ppy)3] in Section 4.1 was carried out using the geometry reported in Ref. [81]
as the S0 minimum. The T1 minimum was optimized with UKS, whereas the T1/S0 minimum energy path (MXP)
was optimized with TD-DFT; both optimizations started from the S0 geometry. The crossing points were located
with the algorithm described in Ref. [195], employing the gradients provided by ADF and the ORCA [196] optimizer,
as ADF does not allow optimizing crossing points. The non-minimum crossing point (XP) in Figure 12 was taken
from the optimization iterations, such that the T1 − S0 gap was <0.02 eV, the octahedral coordination was retained,
and the energy was as low as possible. Subsequently, a linear interpolation in internal coordinates was carried out
between S0 minimum, T1 minimum, the XP, and the MXP. Both optimizations and the single point calculations for
the interpolated geometries were done in the gas phase, with TZP for Re, DZP for CN, DZ for H, and the B3LYP
functional.

The single point calculation for [Ir(Cl)(CO)(ppy)2] in Section 4.2 employed the geometry reported by Brahim et al.
[140], using the geometry data denoted as “cis-[Ir(ppy)2(CO)(Cl)] 2a” in the supporting information; (note that in the
main text of [140], structure 2a is erroneously labeled as the trans conformer). The calculation was performed with
B3LYP, TZP for Re, DZP for C, N, O, Cl, and DZ for H in the gas phase and requesting 60 singlets and 60 triplets.

The three computations for [Ru(L)2(dppz)]2+, L=bipy, phen, or tap, in Section 4.3 are based on geometries
optimized in C2 symmetry with B3LYP/TZP and COSMO (water), the one for [Re(CO)3(py)(dppz)]+ on a geometry in
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Cs symmetry. For the vertical excitation calculations, we employed the B3LYP functional, TZP for Ru, and DZP for C,
N, and H (denoted as “TZP-DZP” in the main text), again using COSMO (water, ε∞ = 1.77). 50 singlets and 50 triplets
were computed for each of the complexes.

The ground state geometries of [M(CO)3(im)(phen)]+, M = Mn, Tc, or Re, in Section 4.4 were optimized with
B3LYP/TZP, with COSMO (water). Out of the possible conformers of these molecules, only one conformer—where
the imidazole plane is oriented parallel to the Nphen–Nphen connection line [179]—was considered, as this is the most
stable conformer (by 1–4 kJ/mol). For each optimized geometry, we performed a frequency calculation to obtain the
vibrational frequencies and normal modes, which together fully specify the harmonic ground state potential energy
surface around the minimum. From that, we computed the density distribution of the nuclear vibrational ground
state wave function [197, 198], from which for each complex 20 geometries were randomly sampled. For each of
these 60 geometries, we then computed 50 singlet and 50 triplet states using B3LYP, TZP for Re, and DZP for C, N, O,
and H.

Finally, the computations in Section 4.5 contrasting quantum chemical methods in [Re(Cl)(CO)3(bipy)] also
employed the Cs symmetric geometry of Ref. [180]. For the TD-DFT calculations, TZP for Re, DZP for C, N, O, Cl,
and DZ for H were used. Excited states were computed with the following functionals: PBE [185], B3LYP [186],
PBE0 [187], CAMY-B3LYP [188], M06-2X [189], and ωB97 [190] using 30 singlets and 30 triplets. The ADC(3)
computations used Ahlrichs’ def2-TZVP basis set with the corresponding ECP for Re, and def2-SV(P) for the
remaining atoms [199, 200]. In this case, 40 states were computed in total, each 10 for 1A′, 1A′′, 3A′, and 3A′′. The
CASSCF/CASPT2 computations [48, 49] used the ANO-RCC basis set [201] with a [24s21p15d11f4g|8s7p5d2f1g]
contraction scheme for Re, [17s12p5d|4s3p1d] for Cl, [14s9p4d|3s2p1d] for C, N, O, and [8s|2s] for H. In the CAS(12,12)
calculation the active space contains 2×pCl, 1×πbipy, 3×dRe, 3×π ∗bipyabd3×π ∗CO orbitals. The CASPT2 uses the default
IPEA shift [202] of 0.25 a.u., an imaginary level shift of 0.2 a.u., and 54 frozen occupied orbitals. State-averaging in the
CASSCF computations was performed over 19 singlet states and state-speci�c CASPT2 corrections were computed
for each state.

All the geometries employed in this contribution, both taken from the literature or optimized within the present
work, are reported in the supporting information. This also contains the active space orbitals of the CASPT2
calculation on [Re(Cl)(CO)3(bipy)].
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Supporting Information

CASSCF active space orbitals

Figure 19 shows the active space orbitals employed for the CASPT2(12,12) calculations on Re(CO)3(Cl)(bipy) in
Sections 3.3 and 4.5.

pCl pCl πbipy dRe

dRe dRe π∗
bipy π∗

bipy

π∗
bipy π∗

CO π∗
CO π∗

CO

Figure 19: Active space orbitals employed for the CASPT2(12,12) calculations on Re(CO)3(Cl)(bipy).

Molecular geometries

On the following pages, all geometries used for calculations in this work are given in XYZ �le format.
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61
Ir(ppy)3: S0 min (Plasser2015JPCA)
Ir +0.000000 +0.000000 -0.004130
N +0.872090 -1.626490 -1.091240
N -1.844620 +0.057990 -1.091240
C -0.595800 +1.616650 +1.037790
C +1.697960 -0.292350 +1.037790
C +2.058050 -2.056070 -0.602390
C +2.539790 -1.326530 +0.561610
N +0.972530 +1.568500 -1.091240
C -1.102160 -1.324300 +1.037790
C +0.751580 +2.810360 -0.602390
C -0.121090 +2.862790 +0.561610
C -2.809630 -0.754290 -0.602390
C -2.418710 -1.536260 +0.561610
C +2.146600 +0.405050 +2.166320
C +3.346570 +0.098370 +2.786510
C +4.158150 -0.923160 +2.301150
C +3.750830 -1.632120 +1.189840
C +2.713190 -3.127730 -1.213780
C +2.153700 -3.748950 -2.309560
C +0.932340 -3.297200 -2.792440
C +0.331210 -2.237130 -2.147150
C +1.771800 +1.405400 -2.147150
C +2.389290 +2.456030 -2.792440
C +2.169830 +3.739640 -2.309560
C +1.352100 +3.913560 -1.213780
C -0.461960 +4.064380 +1.189840
C -1.279590 +4.062650 +2.301150
C -1.758480 +2.849030 +2.786510
C -1.424090 +1.656490 +2.166320
C -3.288880 -2.432250 +1.189840
C -2.878560 -3.139490 +2.301150
C -1.588090 -2.947400 +2.786510
C -0.722520 -2.061540 +2.166320
C -2.103010 +0.831730 -2.147150
C -4.065290 -0.785830 -1.213780
C -4.323540 +0.009310 -2.309560
C -3.321630 +0.841170 -2.792440
H +1.534880 +1.202570 +2.572330
H +3.656510 +0.660800 +3.661810
H +5.096180 -1.161210 +2.788940
H +4.382550 -2.429350 +0.812910
H +3.659240 -3.471620 -0.818000
H +2.660480 -4.582420 -2.782450
H +0.449130 -3.757680 -3.644210
H -0.626110 -1.850990 -2.476620
H +1.916060 +0.383270 -2.476620
H +3.029680 +2.267800 -3.644210
H +2.638260 +4.595250 -2.782450
H +1.176890 +4.904810 -0.818000
H -0.087390 +5.010080 +0.812910
H -1.542450 +4.994020 +2.788940
H -2.400520 +2.836230 +3.661810
H -1.808890 +0.727960 +2.572330
H -4.295160 -2.580720 +0.812910
H -3.553720 -3.832810 +2.788940
H -1.255990 -3.497030 +3.661810
H +0.274020 -1.930530 +2.572330
H -1.289950 +1.467720 -2.476620
H -4.836130 -1.433190 -0.818000
H -5.298730 -0.012830 -2.782450
H -3.478810 +1.489880 -3.644210

61
Ir(ppy)3: T1 min (U-B3LYP/Re-TZP,CN-DZP,H-DZ)
Ir -0.001360 -0.002890 +0.016651
N +0.864530 -1.621537 -1.116951
N -1.788054 +0.063817 -1.115843
C -0.604282 +1.628727 +1.028030
C +1.722602 -0.301155 +1.041560
C +2.053296 -2.059729 -0.628370
C +2.540486 -1.349606 +0.552649
N +1.001527 +1.563058 -1.094178
C -1.058610 -1.303569 +1.065250
C +0.770279 +2.810317 -0.613998
C -0.115685 +2.867829 +0.544268
C -2.786454 -0.797736 -0.607181
C -2.428702 -1.506881 +0.545899
C +2.180215 +0.413185 +2.152090
C +3.380598 +0.092059 +2.770284
C +4.167664 -0.955174 +2.290481
C +3.749540 -1.670477 +1.182289
C +2.707307 -3.111466 -1.277981
C +2.139546 -3.696411 -2.393704
C +0.911229 -3.236000 -2.862690
C +0.306496 -2.194426 -2.187444
C +1.824195 +1.372887 -2.129337
C +2.450659 +2.418708 -2.777455
C +2.214890 +3.711528 -2.316879
C +1.378613 +3.905768 -1.234366
C -0.472851 +4.069790 +1.166855
C -1.310829 +4.063452 +2.267073
C -1.803751 +2.850110 +2.748547
C -1.457765 +1.654933 +2.136044
C -3.285956 -2.414430 +1.234828
C -2.828995 -3.094713 +2.331601
C -1.505589 -2.923609 +2.820027
C -0.650743 -2.040859 +2.179207
C -2.068859 +0.861572 -2.141517
C -4.040328 -0.853404 -1.283169
C -4.290309 -0.055066 -2.358932
C -3.283636 +0.851846 -2.802383
H +1.577268 +1.225071 +2.545431
H +3.709675 +0.656950 +3.638097
H +5.102354 -1.207908 +2.780032
H +4.370203 -2.481610 +0.816493
H +3.657459 -3.470244 -0.904562
H +2.646995 -4.514070 -2.895635
H +0.428813 -3.680309 -3.725364
H -0.653838 -1.792135 -2.488922
H +1.972502 +0.344116 -2.435775
H +3.110105 +2.224830 -3.615283
H +2.688338 +4.561082 -2.798111
H +1.199796 +4.905837 -0.862062
H -0.099436 +5.018424 +0.796468
H -1.583963 +4.996278 +2.748917
H -2.464190 +2.841866 +3.611120
H -1.844221 +0.720552 +2.528293
H -4.303434 -2.571460 +0.895999
H -3.494721 -3.783946 +2.843450
H -1.178132 -3.479155 +3.692057
H +0.355743 -1.901962 +2.558538
H -1.274098 +1.534463 -2.447892
H -4.799806 -1.539416 -0.927834
H -5.246378 -0.099232 -2.869057
H -3.455339 +1.526279 -3.632144
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61
Ir(ppy)3: XP S0/T1 (TD-B3LYP/Re-TZP,CN-DZP,H-DZ)
Ir -0.055534 +0.191782 +0.116633
N +0.757587 -1.850103 -1.074310
N -1.331813 -0.121677 -1.373523
C -0.680124 +1.761613 +1.158030
C +1.868610 -0.242906 +0.638232
C +1.850271 -2.383882 -0.521883
C +2.490286 -1.483497 +0.442675
N +0.924180 +1.838634 -0.964279
C -1.078281 -1.257257 +1.081808
C +0.660889 +3.053130 -0.448961
C -0.212558 +3.030587 +0.731805
C -2.499214 -0.869105 -0.864995
C -2.223105 -1.630843 +0.362633
C +2.477685 +0.716065 +1.448379
C +3.645685 +0.401144 +2.135883
C +4.233541 -0.846405 +1.984215
C +3.661638 -1.779208 +1.129972
C +2.297515 -3.649618 -0.890029
C +1.572716 -4.360790 -1.836101
C +0.434810 -3.791854 -2.391673
C +0.057874 -2.520951 -1.978999
C +1.734963 +1.696203 -2.010662
C +2.321739 +2.785381 -2.628285
C +2.046609 +4.052320 -2.131241
C +1.213168 +4.190202 -1.032826
C -0.573172 +4.169825 +1.437806
C -1.399713 +4.067009 +2.553790
C -1.874214 +2.829042 +2.966213
C -1.518487 +1.678403 +2.271791
C -2.975984 -2.700064 +0.838914
C -2.618552 -3.349899 +2.020017
C -1.494714 -2.957657 +2.734551
C -0.718635 -1.902122 +2.250936
C -1.686554 +0.962814 -2.254509
C -3.672204 -0.822385 -1.532790
C -3.878069 -0.001995 -2.679801
C -2.868473 +0.987275 -2.899244
H +2.048486 +1.700781 +1.578946
H +4.101702 +1.147610 +2.777926
H +5.146178 -1.088832 +2.515163
H +4.135302 -2.745494 +1.004356
H +3.190012 -4.076425 -0.450254
H +1.896132 -5.353066 -2.135524
H -0.159960 -4.320710 -3.127912
H -0.813593 -2.003569 -2.363151
H +1.891689 +0.680844 -2.353260
H +2.972608 +2.642326 -3.483177
H +2.479550 +4.930790 -2.597969
H +0.993312 +5.173291 -0.638575
H -0.223294 +5.149283 +1.133063
H -1.679373 +4.964219 +3.095887
H -2.528780 +2.758304 +3.828897
H -1.900767 +0.715702 +2.583563
H -3.840919 -3.050386 +0.284322
H -3.222006 -4.181470 +2.372377
H -1.213690 -3.474098 +3.646728
H +0.177858 -1.604821 +2.786918
H -0.936426 +1.707703 -2.415169
H -4.492743 -1.419508 -1.140604
H -4.863302 +0.111122 -3.108628
H -3.045736 +1.791947 -3.600586

61
Ir(ppy)3: MXP S0/T1 (TD-B3LYP/Re-TZP,CN-DZP,H-DZ)
Ir -0.145947 +0.564575 +0.165466
N +0.928223 -1.840875 -1.821194
N -1.379993 -0.054515 -1.363300
C -0.703964 +2.033977 +1.429061
C +1.775002 -0.104439 +0.479767
C +1.357097 -2.303459 -0.637632
C +2.216679 -1.397153 +0.156122
N +0.758100 +2.281079 -0.761781
C -0.958832 -1.053760 +1.020019
C +0.584478 +3.450487 -0.098610
C -0.242497 +3.338122 +1.099763
C -2.189938 -1.131937 -1.061889
C -1.924712 -1.727309 +0.231418
C +2.648999 +0.744692 +1.168211
C +3.906609 +0.308157 +1.569764
C +4.323747 -0.983869 +1.273856
C +3.478731 -1.827510 +0.565295
C +0.986315 -3.552453 -0.142460
C +0.127943 -4.342345 -0.888515
C -0.324830 -3.865330 -2.111112
C +0.107356 -2.615429 -2.530859
C +1.573466 +2.211135 -1.819179
C +2.228002 +3.322587 -2.313692
C +2.038077 +4.542809 -1.670801
C +1.219808 +4.605862 -0.557134
C -0.554920 +4.421447 +1.923132
C -1.330098 +4.235709 +3.057051
C -1.796539 +2.961454 +3.383933
C -1.487250 +1.874535 +2.580847
C -2.504756 -2.919165 +0.679016
C -2.131648 -3.458127 +1.896548
C -1.173980 -2.807693 +2.679905
C -0.598580 -1.623622 +2.245993
C -1.498001 +0.547419 -2.569832
C -3.134796 -1.558749 -1.988994
C -3.250790 -0.940548 -3.219790
C -2.402824 +0.134867 -3.514567
H +2.340341 +1.753850 +1.421571
H +4.561763 +0.983233 +2.112732
H +5.307214 -1.327963 +1.577883
H +3.808898 -2.827474 +0.297933
H +1.323599 -3.864617 +0.838491
H -0.201676 -5.304160 -0.509956
H -1.008943 -4.442307 -2.724203
H -0.236166 -2.202634 -3.476319
H +1.703021 +1.222293 -2.246304
H +2.884976 +3.229584 -3.170623
H +2.540339 +5.435972 -2.027730
H +1.085503 +5.544685 -0.035041
H -0.199424 +5.418738 +1.686248
H -1.574939 +5.083377 +3.688714
H -2.408310 +2.822756 +4.270731
H -1.858962 +0.889700 +2.839514
H -3.235434 -3.441733 +0.070518
H -2.579276 -4.385069 +2.240170
H -0.877233 -3.237556 +3.632479
H +0.161027 -1.140609 +2.853195
H -0.835291 +1.382830 -2.747956
H -3.780420 -2.390490 -1.736408
H -3.987579 -1.278432 -3.939285
H -2.454155 +0.650149 -4.466669

43



28
Re(CO)3(Cl)(bipy): S0 min (Harabuchi2016JCTC)
C -3.275103 -0.044247 +1.502075
C -3.196555 -0.052099 +2.892632
C -2.100549 -0.066125 +0.740179
H -4.106718 -0.034369 +3.493527
C -1.939620 -0.083561 +3.496676
N -0.878233 -0.094186 +1.337309
H -1.823889 -0.091815 +4.580356
C -0.810560 -0.103192 +2.683419
H +0.188925 -0.125931 +3.115734
H -4.248407 -0.020601 +1.016325
C -2.100549 -0.066125 -0.740179
N -0.878233 -0.094186 -1.337309
C -3.275103 -0.044247 -1.502075
C -0.810560 -0.103192 -2.683419
C -3.196555 -0.052099 -2.892632
C -1.939620 -0.083561 -3.496676
H -4.248407 -0.020601 -1.016325
H +0.188925 -0.125931 -3.115734
H -4.106718 -0.034369 -3.493527
H -1.823889 -0.091815 -4.580356
Re +0.894823 -0.052419 +0.000000
C +2.265517 +0.103478 +1.361644
C +1.070050 -1.967897 +0.000000
C +2.265517 +0.103478 -1.361644
Cl +0.509433 +2.478712 +0.000000
O +1.176732 -3.127265 +0.000000
O +3.066717 +0.208112 +2.195548
O +3.066717 +0.208112 -2.195548

44
Ir(CO)(Cl)(ppy)2: S0 min (Brahim2014CTC)
C +0.263266 -1.632625 +2.665885
C +0.723630 -2.043724 +3.917764
C +1.779326 -1.374338 +4.550821
C +2.374717 -0.288470 +3.922698
C +1.913866 +0.131515 +2.660906
C +0.844071 -0.537695 +2.013079
C +2.477168 +1.266785 +1.937072
N +1.897397 +1.520647 +0.725439
C +2.326835 +2.544498 -0.034846
C +3.364088 +3.376550 +0.356442
C +3.976629 +3.137455 +1.590675
C +3.531594 +2.084759 +2.375781
Ir +0.320355 +0.259705 +0.206373
C +1.421556 -1.058029 -0.708865
O +2.032462 -1.852827 -1.274433
C -0.975454 +1.651673 +1.045719
C -1.597864 +2.532878 +0.123098
C -2.480957 +3.535637 +0.563179
C -2.767834 +3.674956 +1.915756
C -2.174117 +2.805477 +2.834992
C -1.292794 +1.812508 +2.401452
C -1.293905 +2.332234 -1.299595
C -1.882354 +3.043758 -2.359608
C -1.537281 +2.756067 -3.672401
C -0.604082 +1.748249 -3.928887
C -0.056978 +1.075581 -2.845330
N -0.377571 +1.361933 -1.571410
Cl -1.593377 -1.196652 -0.190960
H +1.808999 +2.679522 -0.976566
H +3.677314 +4.189216 -0.289639
H +3.992756 +1.885902 +3.336007
H +4.791542 +3.768090 +1.934161
H +3.193454 +0.228844 +4.416327
H +0.255975 -2.894572 +4.407875
H +2.132433 -1.701353 +5.524807
H -0.856061 +1.143678 +3.136255
H -2.951059 +4.211943 -0.145515
H -2.401900 +2.899950 +3.894334
H -3.451157 +4.450630 +2.250512
H +0.658281 +0.273137 -2.987369
H -0.313243 +1.479897 -4.938652
H -2.618753 +3.809839 -2.148707
H -1.997318 +3.304541 -4.489593
H -0.558505 -2.157732 +2.190307

73
[Ru(bipy)2(dppz)]2+: S0 min (B3LYP/TZP)
Ru +0.000000 +0.000000 +1.449479
N -0.992742 -1.055937 +2.959913
C -0.445075 -2.255534 +3.287288
C +0.727450 -2.656787 +2.490587
C +1.386578 -3.871365 +2.649228
C +2.481127 -4.167513 +1.852931
C +2.897074 -3.239347 +0.908338
C +2.203650 -2.046997 +0.797049
N +1.145261 -1.751497 +1.567751
C -0.980351 -3.029886 +4.311202
C -2.085802 -2.573366 +5.010534
C -2.637782 -1.346085 +4.670335
C -2.062678 -0.619292 +3.642772
N +1.006891 +0.871571 -0.174848
C +1.994402 +1.768860 -0.129160
C +2.566095 +2.304708 -1.279235
C +2.106682 +1.903083 -2.516324
C +1.069124 +0.967669 -2.588381
C +0.527817 +0.483309 -3.853931
N +1.033088 +0.948199 -4.981383
C +0.526491 +0.484537 -6.138533
C -0.526491 -0.484537 -6.138533
N -1.033088 -0.948199 -4.981383
C -0.527817 -0.483309 -3.853931
C -1.069124 -0.967669 -2.588381
C -2.106682 -1.903083 -2.516324
C -2.566095 -2.304708 -1.279235
C -1.994402 -1.768860 -0.129160
N -1.006891 -0.871571 -0.174848
C -0.539800 -0.480275 -1.390374
C +0.539800 +0.480275 -1.390374
C -1.036969 -0.955264 -7.374197
C -0.521594 -0.481145 -8.549357
C +0.521594 +0.481145 -8.549357
C +1.036969 +0.955264 -7.374197
N +0.992742 +1.055937 +2.959913
C +2.062678 +0.619292 +3.642772
C +2.637782 +1.346085 +4.670335
C +2.085802 +2.573366 +5.010534
H +2.506211 +3.167587 +5.808383
C +0.980351 +3.029886 +4.311202
C +0.445075 +2.255534 +3.287288
C -0.727450 +2.656787 +2.490587
N -1.145261 +1.751497 +1.567751
C -2.203650 +2.046997 +0.797049
C -2.897074 +3.239347 +0.908338
C -2.481127 +4.167513 +1.852931
H -2.998103 +5.108434 +1.969656
C -1.386578 +3.871365 +2.649228
H +2.998103 -5.108434 +1.969656
H -2.506211 -3.167587 +5.808383
H -2.461633 +0.339491 +3.347998
H -3.497574 -0.949065 +5.186817
H +3.742212 -3.425827 +0.264261
H +2.497190 -1.298289 +0.076926
H +2.461633 -0.339491 +3.347998
H +3.497574 +0.949065 +5.186817
H -3.742212 +3.425827 +0.264261
H -2.497190 +1.298289 +0.076926
H +2.337257 +2.061239 +0.852028
H +3.362890 +3.025461 -1.184942
H +2.533060 +2.296448 -3.425459
H +1.831717 +1.687397 -7.357098
H +0.908961 +0.839228 -9.492212
H -0.908961 -0.839228 -9.492212
H -1.831717 -1.687397 -7.357098
H -2.533060 -2.296448 -3.425459
H -3.362890 -3.025461 -1.184942
H -2.337257 -2.061239 +0.852028
H +1.048298 -4.581822 +3.384287
H -0.537432 -3.978234 +4.564316
H -1.048298 +4.581822 +3.384287
H +0.537432 +3.978234 +4.564316

44



77
[Ru(phen)2(dppz)]2+: S0 min (B3LYP/TZP)
Ru +0.000000 +0.000000 +1.153207
N -1.031338 -1.047808 +2.649192
C -0.459450 -2.248875 +2.956082
C +0.707296 -2.620931 +2.224543
C +1.341410 -3.850821 +2.484940
C +2.485701 -4.165133 +1.727986
C +2.929791 -3.273130 +0.778125
C +2.244192 -2.068550 +0.582564
N +1.162331 -1.740342 +1.285729
C +0.796574 -4.708061 +3.495243
C -0.313184 -4.352633 +4.193480
C -0.978265 -3.108682 +3.942920
C -2.133506 -2.688488 +4.628767
C -2.699923 -1.474391 +4.312043
C -2.121881 -0.677318 +3.316952
N +1.041191 +0.825410 -0.462362
C +2.083002 +1.661157 -0.412379
C +2.699562 +2.148879 -1.561623
C +2.227863 +1.766695 -2.801952
C +1.133060 +0.897451 -2.877589
C +0.563217 +0.444794 -4.145018
N +1.104715 +0.869872 -5.273634
C +0.563594 +0.442520 -6.432045
C -0.563594 -0.442520 -6.432045
N -1.104715 -0.869872 -5.273634
C -0.563217 -0.444794 -4.145018
C -1.133060 -0.897451 -2.877589
C -2.227863 -1.766695 -2.801952
C -2.699562 -2.148879 -1.561623
C -2.083002 -1.661157 -0.412379
N -1.041191 -0.825410 -0.462362
C -0.565478 -0.449272 -1.680022
C +0.565478 +0.449272 -1.680022
C -1.111763 -0.869723 -7.668505
C -0.559539 -0.437208 -8.844227
C +0.559539 +0.437208 -8.844227
C +1.111763 +0.869723 -7.668505
N +1.031338 +1.047808 +2.649192
C +2.121881 +0.677318 +3.316952
C +2.699923 +1.474391 +4.312043
C +2.133506 +2.688488 +4.628767
H +2.563877 +3.320886 +5.394200
C +0.978265 +3.108682 +3.942920
C +0.459450 +2.248875 +2.956082
C -0.707296 +2.620931 +2.224543
N -1.162331 +1.740342 +1.285729
C -2.244192 +2.068550 +0.582564
C -2.929791 +3.273130 +0.778125
C -2.485701 +4.165133 +1.727986
H -3.001873 +5.100898 +1.898163
C -1.341410 +3.850821 +2.484940
C -0.796574 +4.708061 +3.495243
C +0.313184 +4.352633 +4.193480
H +3.001873 -5.100898 +1.898163
H -2.563877 -3.320886 +5.394200
H -2.550518 +0.278490 +3.052723
H -3.587197 -1.119833 +4.816894
H -0.717956 -5.007062 +4.954685
H +1.290989 -5.650894 +3.690280
H +3.803419 -3.481883 +0.177221
H +2.578921 -1.353473 -0.154691
H +2.550518 -0.278490 +3.052723
H +3.587197 +1.119833 +4.816894
H +0.717956 +5.007062 +4.954685
H -1.290989 +5.650894 +3.690280
H -3.803419 +3.481883 +0.177221
H -2.578921 +1.353473 -0.154691
H +2.430679 +1.941183 +0.570879
H +3.540925 +2.819938 -1.465123
H +2.686992 +2.126740 -3.710875
H +1.964057 +1.536925 -7.651679
H +0.975769 +0.762037 -9.789185
H -0.975769 -0.762037 -9.789185
H -1.964057 -1.536925 -7.651679
H -2.686992 -2.126740 -3.710875
H -3.540925 -2.819938 -1.465123
H -2.430679 -1.941183 +0.570879

73
[Ru(tap)2(dppz)]2+: S0 min (B3LYP/TZP)
Ru +0.000000 +0.000000 -1.158577
N +1.162983 -1.734480 -1.265064
C +0.689890 -2.629635 -2.176146
C -0.465272 -2.269047 -2.912355
N -1.031573 -1.058556 -2.647624
C -2.109435 -0.737499 -3.350222
C -2.630726 -1.622276 -4.315096
N -2.100512 -2.801593 -4.579794
C -0.997323 -3.145608 -3.873239
C -0.351786 -4.407422 -4.081553
C +0.753130 -4.756144 -3.369636
C +1.310594 -3.871908 -2.390238
N +2.412045 -4.219967 -1.683019
C +2.853229 -3.341100 -0.802498
C +2.239581 -2.092991 -0.578877
H -2.576239 +0.216879 -3.158425
H -3.512946 -1.329181 -4.869450
H -0.772548 -5.073014 -4.823123
H +1.240821 -5.708943 -3.525241
H +3.732157 -3.601276 -0.226859
H +2.631836 -1.400843 +0.150716
N -1.162983 +1.734480 -1.265064
C -0.689890 +2.629635 -2.176146
C +0.465272 +2.269047 -2.912355
N +1.031573 +1.058556 -2.647624
C +2.109435 +0.737499 -3.350222
C +2.630726 +1.622276 -4.315096
N +2.100512 +2.801593 -4.579794
C +0.997323 +3.145608 -3.873239
C +0.351786 +4.407422 -4.081553
C -0.753130 +4.756144 -3.369636
C -1.310594 +3.871908 -2.390238
N -2.412045 +4.219967 -1.683019
C -2.853229 +3.341100 -0.802498
C -2.239581 +2.092991 -0.578877
H +2.576239 -0.216879 -3.158425
H +3.512946 +1.329181 -4.869450
H +0.772548 +5.073014 -4.823123
H -1.240821 +5.708943 -3.525241
H -3.732157 +3.601276 -0.226859
H -2.631836 +1.400843 +0.150716
N -1.055470 -0.810407 +0.459583
C -0.572365 -0.440016 +1.675577
C +0.572365 +0.440016 +1.675577
N +1.055470 +0.810407 +0.459583
C +2.112156 +1.625885 +0.407501
C +2.737420 +2.101291 +1.557305
C +2.257332 +1.727751 +2.796205
C +1.147258 +0.877836 +2.872673
C +0.570228 +0.435012 +4.140040
C -0.570228 -0.435012 +4.140040
C -1.147258 -0.877836 +2.872673
C -2.257332 -1.727751 +2.796205
C -2.737420 -2.101291 +1.557305
C -2.112156 -1.625885 +0.407501
N +1.118484 +0.852421 +5.268068
C +0.570894 +0.433580 +6.426040
C +1.124571 +0.853645 +7.662534
C +0.565830 +0.429186 +8.837852
C -0.565830 -0.429186 +8.837852
C -1.124571 -0.853645 +7.662534
C -0.570894 -0.433580 +6.426040
N -1.118484 -0.852421 +5.268068
H +2.467692 +1.899436 -0.574400
H +3.592219 +2.754809 +1.460913
H +2.722567 +2.079141 +3.705410
H +1.986375 +1.508481 +7.645916
H +0.986545 +0.747821 +9.782939
H -0.986545 -0.747821 +9.782939
H -1.986375 -1.508481 +7.645916
H -2.722567 -2.079141 +3.705410
H -3.592219 -2.754809 +1.460913
H -2.467692 -1.899436 -0.574400

45



49
[Re(CO)3(py)(dppz)]+: S0 min (B3LYP/TZP)
Re -0.037760 -0.172581 +0.000000
N -0.314508 +1.557127 +1.333112
N -0.314508 +1.557127 -1.333112
C -1.907856 -0.659416 +0.000000
C +0.341701 -1.495220 -1.352453
C +0.341701 -1.495220 +1.352453
C -0.396602 +1.517080 +2.663900
C -0.358827 +2.666020 +3.446023
C -0.220325 +3.894692 +2.835086
C -0.155383 +3.960603 +1.438957
C -0.224326 +2.763420 +0.722029
C -0.224326 +2.763420 -0.722029
C -0.155383 +3.960603 -1.438957
C -0.220325 +3.894692 -2.835086
C -0.358827 +2.666020 -3.446023
C -0.396602 +1.517080 -2.663900
C -0.010350 +5.218975 +0.714943
C -0.010350 +5.218975 -0.714943
O -3.029255 -0.935997 +0.000000
O +0.578972 -2.265930 -2.181036
O +0.578972 -2.265930 +2.181036
H -0.479351 +0.539285 +3.109806
H -0.424617 +2.577492 +4.518405
H -0.424617 +2.577492 -4.518405
H -0.479351 +0.539285 -3.109806
H -0.166316 +4.803703 +3.412838
H -0.166316 +4.803703 -3.412838
N +0.128994 +6.337138 +1.403250
N +0.128994 +6.337138 -1.403250
C +0.278319 +7.483599 -0.716852
C +0.278319 +7.483599 +0.716852
C +0.445140 +8.707766 -1.411275
H +0.444805 +8.690836 -2.491751
C +0.445140 +8.707766 +1.411275
H +0.444805 +8.690836 +2.491751
C +0.604950 +9.871211 -0.709972
H +0.734907 +10.805655 -1.236594
C +0.604950 +9.871211 +0.709972
H +0.734907 +10.805655 +1.236594
C +2.696074 +0.904680 +1.152995
C +3.935047 +1.518525 +1.193811
C +4.567569 +1.841454 +0.000000
H +5.531840 +2.328977 +0.000000
C +3.935047 +1.518525 -1.193811
H +4.386297 +1.738648 -2.149061
N +2.067935 +0.608063 +0.000000
C +2.696074 +0.904680 -1.152995
H +2.180709 +0.646260 -2.064653
H +4.386297 +1.738648 +2.149061
H +2.180709 +0.646260 +2.064653

38
[Mn(CO)3(im)(phen)]+: S0 min (B3LYP/TZP)
Mn -0.462641 +0.871149 +0.224406
N +1.032095 +0.168187 +1.521057
N +0.802574 +0.210318 -1.296362
N -1.002827 -1.137193 +0.115222
N +2.993137 -0.287769 +2.384035
C +2.337150 +0.366533 +1.408314
C -1.738897 +1.346945 -0.984395
C -1.561503 +1.266749 +1.620727
C +0.215787 +2.559161 +0.274183
C +1.672748 +0.912303 -2.015349
C +2.532013 +0.321489 -2.951058
C +2.484719 -1.038934 -3.151352
C +1.564967 -1.809811 -2.416050
C +0.739136 -1.132201 -1.498199
C -0.226393 -1.855415 -0.738085
C -0.349226 -3.249123 -0.898282
C -1.327260 -3.905777 -0.127931
C -2.116028 -3.168942 +0.725202
C -1.926241 -1.784057 +0.818234
C +1.428653 -3.229054 -2.554389
C +0.512925 -3.918908 -1.826026
C +2.070487 -0.940823 +3.166428
C +0.853881 -0.649365 +2.623097
O -2.542254 +1.637373 -1.754394
O -2.256798 +1.518994 +2.502283
O +0.652345 +3.623094 +0.311633
H +1.701827 +1.978439 -1.842996
H +3.222327 +0.947471 -3.498149
H -2.879838 -3.635584 +1.330589
H -2.536316 -1.192121 +1.484891
H +2.073350 -3.741322 -3.256858
H +0.414471 -4.990953 -1.937411
H +3.141268 -1.520786 -3.864136
H -1.450487 -4.977328 -0.215314
H +3.994011 -0.296089 +2.509353
H -0.120792 -0.973916 +2.939776
H +2.825164 +0.954526 +0.652517
H +2.353195 -1.539690 +4.013220
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38
[Tc(CO)3(im)(phen)]+: S0 min (B3LYP/TZP)
Tc -0.504419 +0.943061 +0.234166
N +1.083560 +0.154720 +1.579801
N +0.826069 +0.173721 -1.353140
N -1.015243 -1.200783 +0.087748
N +3.049417 -0.390967 +2.375187
C +2.391837 +0.322219 +1.443840
C -1.873475 +1.480409 -1.035591
C -1.680503 +1.363905 +1.720420
C +0.214436 +2.745530 +0.280723
C +1.706272 +0.862469 -2.074220
C +2.574361 +0.255279 -2.988929
C +2.526356 -1.108291 -3.160208
C +1.599940 -1.865849 -2.419421
C +0.758442 -1.176405 -1.522106
C -0.210013 -1.902512 -0.757518
C -0.306620 -3.301951 -0.900819
C -1.274801 -3.972735 -0.130341
C -2.085723 -3.250323 +0.713069
C -1.927354 -1.862165 +0.793779
C +1.482435 -3.287446 -2.540211
C +0.569818 -3.976667 -1.809860
C +2.127013 -1.052594 +3.150384
C +0.906737 -0.706002 +2.650246
O -2.683800 +1.787640 -1.795683
O -2.385084 +1.588355 +2.605706
O +0.670184 +3.805015 +0.297671
H +1.731334 +1.931761 -1.922021
H +3.269949 +0.869587 -3.542277
H -2.841430 -3.730098 +1.318181
H -2.553912 -1.276930 +1.451152
H +2.140017 -3.800678 -3.229811
H +0.484408 -5.051428 -1.903805
H +3.188740 -1.606081 -3.856424
H -1.371662 -5.047534 -0.211074
H +4.052106 -0.430539 +2.478352
H -0.069062 -1.016679 +2.977964
H +2.880599 +0.929112 +0.703190
H +2.412735 -1.692893 +3.965231

38
[Re(CO)3(im)(phen)]+: S0 min (B3LYP/TZP)
Re -0.506387 +0.945561 +0.234076
N +1.079472 +0.145452 +1.563853
N +0.827178 +0.166913 -1.343083
N -1.004040 -1.199665 +0.089193
N +3.043709 -0.394781 +2.360887
C +2.389012 +0.316952 +1.429217
C -1.870502 +1.487578 -1.021487
C -1.673956 +1.368340 +1.711148
C +0.202020 +2.739241 +0.279311
C +1.705973 +0.861594 -2.063586
C +2.573862 +0.257139 -2.978911
C +2.531259 -1.106830 -3.153076
C +1.607459 -1.869331 -2.414337
C +0.765507 -1.183923 -1.516787
C -0.201687 -1.908345 -0.754692
C -0.302877 -3.305933 -0.897471
C -1.275852 -3.970960 -0.128166
C -2.085771 -3.243021 +0.712346
C -1.922137 -1.856466 +0.795163
C +1.489077 -3.291074 -2.535055
C +0.574681 -3.980251 -1.806031
C +2.121667 -1.057774 +3.135889
C +0.901452 -0.716211 +2.634818
O -2.687028 +1.801263 -1.780745
O -2.380684 +1.594721 +2.601541
O +0.657251 +3.805167 +0.293658
H +1.724983 +1.929791 -1.906323
H +3.267444 +0.874551 -3.531043
H -2.845025 -3.718920 +1.315836
H -2.544361 -1.265087 +1.450382
H +2.147055 -3.804762 -3.223814
H +0.488990 -5.054833 -1.900913
H +3.196140 -1.600125 -3.849971
H -1.377901 -5.045326 -0.207013
H +4.046379 -0.432359 +2.465782
H -0.075648 -1.025659 +2.958531
H +2.873471 +0.926337 +0.688377
H +2.407868 -1.696657 +3.951475
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