posted on 2017-09-22, 11:11authored byChunrong Feng, Xince Wang, Huaizhong Zhao
In this paper, we study the existence, uniqueness and the probabilistic representation of the weak solutions of quasi-linear parabolic and elliptic partial differential equations (PDEs) in the Sobolev space H1ρ(Rd). For this, we study first the solutions of forward-backward stochastic differential equations (FBSDEs) with smooth coefficients, regularity of solutions and their connection with classical solutions of quasi-linear parabolic PDEs. Then using the approximation procedure, we establish their convergence in the Sobolev space to the solutions of the FBSDES in the space L2ρ(Rd; Rd) ⊗ L2ρ(Rd; Rk) ⊗ L2ρ(Rd; Rk×d). This gives a connection with the weak solutions of quasi-linear parabolic PDEs. Finally, we study the unique weak solutions of quasi-linear elliptic PDEs using the solutions of the FBSDEs on infinite horizon.
Funding
We would like to acknowledge the financial support of Royal Society Newton Advanced
Fellowship NA150344.
History
School
Science
Department
Mathematical Sciences
Published in
Journal of Differential Equations
Volume
264
Issue
2
Pages
959 - 1018
Citation
FENG, C., WANG, X. and ZHAO, H., 2017. Quasi-linear PDEs and forward-backward stochastic differential equations: weak solutions. Journal of Differential Equations, 264 (2), pp. 959-1018.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2017-09-16
Publication date
2017-09-29
Notes
This paper was published in the journal Journal of Differential Equations and the definitive published version is available at https://doi.org/10.1016/j.jde.2017.09.030.