nemborewkb_rsa8.pdf (546.25 kB)
Download fileRadiating dispersive shock waves in non-local optical media
journal contribution
posted on 2016-01-15, 14:04 authored by Gennady El, Noel F. SmythWe consider the step Riemann problem for the
system of equations describing the propagation of a coherent light beam in nematic liquid crystals, which is a general system describing nonlinear wave propagation in a number of different physical applications. While the equation governing the light beam is of defocusing nonlinear Schrödinger equation type, the undular bore generated from this initial condition has major differences from the standard undular bore solution of the defocusing nonlinear Schrödinger equation. In particular, it
is found that the bore has positive polarity and generates resonant radiation which propagates ahead of it. Remarkably, the velocity of the lead soliton of the bore is determined by the classical shock velocity. The solution for the radiative wavetrain
is obtained using the WKB approximation. It is shown that for sufficiently small initial jumps the nematic undular bore is asymptotically governed by a Korteweg-de Vries equation with fifth order dispersion, which explicitly shows the resonance
generating the radiation ahead of the bore. The constructed asymptotic theory is shown to be in good agreement with the results of direct numerical simulations.
Funding
This paper was supported by the London Mathematical Society under the Research in Pairs Grant 41421 and by the Royal Society International Exchanges Scheme Grant IE131353.
History
School
- Science
Department
- Mathematical Sciences