A stochastic morphological modelling framework has been established to predict the tensile behaviour of Randomly Oriented Strands made of ultra-thin Carbon Fibre Reinforced Thermoplastic prepreg tapes. The tape properties from their distributions are generated in a Monte Carlo simulation. The Young’s modulus of a laminate is accurately predicted using classical laminate theory. Fibre-dominant tensile failure is also accurately predicted in Carbon Fibre Reinforced Thermoplastics Sheet Moulding Compounds using Weibull theory. Material discontinuity is accounted for via the introduction of a stress concentration factor, as a result of tape overlaps. The predicted tensile strength values and scatter were found to increase with increasing tape length, which agrees well with literature data, and thus demonstrates the reliability of the proposed modelling framework. The rapid modelling framework is well-suited for application in structures.
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).