Loughborough University
Browse
2013 SAE - Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles.pdf (4.75 MB)

Real-time optimal energy management of heavy duty hybrid electric vehicles

Download (4.75 MB)
journal contribution
posted on 2017-09-18, 09:12 authored by Dezong Zhao, Richard Stobart
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time. Comparing with traditional real-time supervisory control strategies, the proposed F-ECMS is more robust to the test environments with rapid dynamics. The proposed method is validated via simulation under two transient test cycles, with the fuel economy benefits of 4.43% and 6.44%, respectively. The F-ECMS shows better performance than the telemetry ECMS (T-ECMS), in terms of the sustainability of battery SOC.

Funding

This project was co-funded by the Technology Strategy Board (TSB) UK, under a grant for the Low Carbon Vehicle IDP4 Programme (TP14/LCV/6/I/BG011L).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

SAE International Journal of Alternative Powertrains

Volume

2

Issue

2

Pages

369 - 378

Citation

ZHAO, D. and STOBART, R., 2013. Real-time optimal energy management of heavy duty hybrid electric vehicles. SAE International Journal of Alternative Powertrains, 2 (2), pp.369-378.

Publisher

© SAE International

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2013

ISSN

2167-4191

eISSN

2167-4205

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC