Loughborough University
Browse

Recent advances on time-stretch dispersive Fourier transform and its applications

Download (8.75 MB)
journal contribution
posted on 2023-03-14, 14:05 authored by Thomas Godin, Lynn Sader, Anahita Khodadad Kashi, Pierre-Henry Hanzard, Ammar Hideur, David J Moss, Roberto Morandotti, Goery Genty, John M Dudley, Alessia PasquaziAlessia Pasquazi, Michael Kues, Benjamin Wetzel
The need to measure high repetition rate ultrafast processes cuts across multiple areas of science. The last decade has seen tremendous advances in the development and application of new techniques in this field, as well as many breakthrough achievements analyzing non-repetitive optical phenomena. Several approaches now provide convenient access to single-shot optical waveform characterization, including the dispersive Fourier transform (DFT) and time-lens techniques, which yield real-time ultrafast characterization in the spectral and temporal domains, respectively. These complementary approaches have already proven to be highly successful to gain insight into numerous optical phenomena including the emergence of extreme events and characterizing the complexity of laser evolution dynamics. However, beyond the study of these fundamental processes, real-time measurements have also been driven by particular applications ranging from spectroscopy to velocimetry, while shedding new light in areas spanning ultrafast imaging, metrology or even quantum science. Here, we review a number of landmark results obtained using DFT-based technologies, including several recent advances and key selected applications.

Funding

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 950618 (STREAMLINE project) and No. 947603 (QFreC project). B.W. and J.M.D. acknowledge the support of the French Agence Nationale de la Recherche (ANR) through the OPTIMAL project (ANR-20-CE30-0004). B.W. further acknowledges the support of the Conseil Régional Nouvelle-Aquitaine (SCIR & SPINAL projects). T.G. and A.H. acknowledge the support of the Agence Nationale de la Recherche (ANR) and Labex EMC3, the European Union with the European Regional Development Fund, and the Conseil Régional de Normandie. A.K. and M.K. acknowledge funding from the German Federal Ministry of Education and Research within the project PQuMAL and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). J.M.D. acknowledges support of the French Investissements d’Avenir programme ISITE-BFC (ANR-15-IDEX-0003), project EUR (ANR-17-EURE-0002). G.G. acknowledges the support from the Academy of Finland (298463, 318082, and 320165).

History

School

  • Science

Department

  • Physics

Published in

Advances in Physics: X

Volume

7

Issue

1

Publisher

Taylor & Francis

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acceptance date

2022-04-14

Publication date

2022-05-11

Copyright date

2022

eISSN

2374-6149

Language

  • en

Depositor

Prof Alessia Pasquazi. Deposit date: 14 March 2023

Article number

2067487

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC