<p>Aperiodic (quasicrystalline) tilings, such as Penrose’s tiling, can be built up from e.g. kites and darts, squares and equilateral triangles, rhombi or shield shaped tiles and can have a variety of different symmetries. However, almost all quasicrystals occurring in soft-matter are of the dodecagonal type. Here, we investigate a class of aperiodic tilings with hexagonal symmetry that are based on rectangles and two types of equilateral triangles. We show how to design soft-matter systems of particles interacting via pair potentials containing two length-scales that form aperiodic stable states with two different examples of rectangle–triangle tilings. One of these is the bronze-mean tiling, while the other is a generalization. Our work points to how more general (beyond dodecagonal) quasicrystals can be designed in soft-matter. </p>
Funding
Quasicrystals: how and why do they form?
Engineering and Physical Sciences Research Council
This paper was accepted for publication in the journal Physical Review E and the definitive published version is available at https://doi.org/10.1103/PhysRevE.106.044602