Regular languages are Church-Rosser congruential
journal contribution
posted on 2018-02-22, 14:40 authored by Volker Diekert, Manfred Kufleitner, Klaus Reinhardt, Tobias Walter© 2015 ACM 0004-5411/2015/10-ART32 15.00. This article shows a general result about finite monoids and weight reducing string rewriting systems. As a consequence it proves a long standing conjecture in formal language theory: All regular languages are Church-Rosser congruential. The class of Church-Rosser congruential languages was introduced by McNaughton, Narendran, and Otto in 1988. A language L is Church-Rosser congruential if there exists a finite, confluent, and length-reducing semi-Thue system S such that L is a finite union of congruence classes modulo S. It was known that there are deterministic linear context-free languages which are not Church- Rosser congruential, but the conjecture was that all regular languages are of this form. The article offers a stronger statement: A language is regular if and only if it is strongly Church-Rosser congruential. It is the journal version of the conference abstract which was presented at ICALP 2012.
Funding
M. Kufleitner was supported by the German Research Foundation (DFG) under grant DI 435/5-1
History
School
- Science
Department
- Computer Science
Published in
Journal of the ACMVolume
62Issue
5Citation
DIEKERT, V. ...et al., 2015. Regular languages are Church-Rosser congruential. Journal of the ACM, 62(5): 39.Publisher
© the Authors. Published by ACMVersion
- AM (Accepted Manuscript)
Publication date
2015Notes
© ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Journal of the ACM, 62(5): 39. https://doi.org/10.1145/2808227ISSN
0004-5411eISSN
1557-735XPublisher version
Language
- en
Administrator link
Usage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC