posted on 2018-01-30, 13:14authored byClay Prater, Eric J. Norman, Michelle A. Evans-White
Anthropogenic nutrient enrichment of
forested headwater streams can enhance detrital quality, decrease standing stocks, and alter the community structure of detrivorous insects, reducing nutrient retention and decreasing ecosystem functioning. Our objective was to determine if stoichiometric
principles could be used to predict genus-specific shifts in shredding insect abundance and biomass across a dissolved nutrient and detritus food quality/quantity gradient. Detritus, insect, and water samples were collected from 12 Ozark Highland headwater
streams. Significant correlations were found between stream nutrients and detrital quality but not quantity. Abundance and biomass responses of four out of five tested genera were accurately predicted by consumerresource stoichiometric theory. Low carbon:phosphorus (C:P) shredders responded positively to increased total phosphorus and/or food quality, and high C:P shredders exhibited neutral or negative responses to these variables. Genus-specific declines were
correlated with decreased overall biomass in shredder assemblages, potentially causing disruptions in nutrient flows to higher level consumers with nutrient enrichment. This work provides further evidence that elevated nutrients may negatively impact shredding
insect communities by altering the stoichiometry of detritus–detritivore interactions. A better understanding of stoichiometric mechanisms altering macroinvertebrate populations is needed to help inform water quality criteria for the management of headwater streams.
Funding
This research was funded by the National Science
Foundation (DEB-1020772 and REU-0755331).
History
School
Social Sciences
Department
Geography and Environment
Published in
Hydrobiologia
Volume
753
Issue
1
Pages
219 - 232
Citation
PRATER, C., NORMAN, E.J. and EVANS-WHITE, M.A., 2015. Relationships among nutrient enrichment, detritus quality and quantity, and large-bodied shredding insect community structure. Hydrobiologia, 753(1), pp. 219-232.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2015
Notes
This is a post-peer-review, pre-copyedit version of an article published in Hydrobiologia. The final authenticated version is available online at: https://doi.org/10.1007/s10750-015-2208-2