Loughborough University
Browse

File(s) under permanent embargo

Reason: This item is currently closed access.

Relationships between vascular resistance and energy deficiency, nutritional status and oxidative stress in oestrogen deficient physically active women.

journal contribution
posted on 2016-03-18, 12:12 authored by Emma ODonnellEmma ODonnell, Paula J. Harvey, Mary Jane De Souza
OBJECTIVE: Oestrogen deficiency contributes to altered cardiovascular function in premenopausal amenorrheic physically active women. We investigated whether other energy deficiency-associated factors might also be associated with altered cardiovascular function in these women. DESIGN: A prospective observational study was completed at a research facility at the University of Toronto. PARTICIPANTS: Thirty-two healthy premenopausal women (18-35 years old) were studied; 9 sedentary and ovulatory; 14 physically active and ovulatory; and 8 physically active and amenorrheic. MEASUREMENTS: We measured calf vascular resistance, resting heart rate, dietary energy intake, resting energy expenditure and serum measures of homocysteine, high-sensitivity C-reactive protein, oxidized low-density lipoproteins, total T(3), ghrelin, leptin and insulin. RESULTS: Groups were similar (P > 0.05) in age (25.1 +/- 0.8 years; mean +/- SEM), weight (57.3 +/- 1.1 kg), and BMI (21.4 +/- 0.3 kg/m(2)). Resting vascular resistance and ghrelin were highest (P < 0.05, main effect), and total T(3) and energy expenditure adjusted for fat free mass lowest (P < 0.05, main effect) in oestrogen deficient women. Using pooled data for stepwise multiple regression modelling: ghrelin and resting energy expenditure adjusted for fat free mass were associated with resting vascular resistance (R(2) = 0.398, P = 0.018); adjusted dietary energy intake was associated with peak-ischaemic vascular resistance (R(2) = 0.231, P = 0.015). Adjusted resting energy expenditure (r = 0.624, P < 0.001) and total T(3) correlated (r = 0.427, P = 0.019) with resting heart rate. Homocysteine, high-sensitivity C-reactive protein and oxidized low-density lipoproteins were similar (P > 0.05, main effect) among the groups, and were unrelated to cardiovascular measures. CONCLUSION: Altered resting vascular resistance in premenopausal oestrogen deficient physically active amenorrheic women is not associated with vascular inflammation or oxidative stress, but rather with parameters that reflect metabolic allostasis and dietary intake, suggesting a potential role for chronic energy deficiency in vascular regulation.

History

School

  • Sport, Exercise and Health Sciences

Published in

Clinical endocrinology

Volume

70

Issue

2

Pages

294 - 302

Citation

O'DONNELL, E., HARVEY, P.J. and DE SOUZA, M.J., 2009. Relationships between vascular resistance and energy deficiency, nutritional status and oxidative stress in oestrogen deficient physically active women. Clinical Endocrinology, 70(2), pp. 294-302.

Publisher

© Wiley

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2009

Notes

This paper is in closed access.

ISSN

0300-0664

eISSN

1365-2265

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC