posted on 2013-07-23, 10:46authored byO.V. Astafiev, Alexandre ZagoskinAlexandre Zagoskin, A.A. Abdumalikov, Yu A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, J.S. Tsai
An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.
History
School
Science
Department
Physics
Citation
ASTAFIEV, O. ... et al, 2010. Resonance fluorescence of a single artificial atom. Science, 327 (5967), pp. 840 - 843.