Retinal area detector from Scanning Laser Ophthalmoscope (SLO) images for diagnosing retinal diseases
journal contribution
posted on 2016-02-08, 16:47 authored by Muhammad Salman Haleem, Liangxiu Han, Jano van Hemert, Baihua LiBaihua Li, Alan Fleming© 2014 IEEE. Scanning laser ophthalmoscopes (SLOs) can be used for early detection of retinal diseases. With the advent of latest screening technology, the advantage of using SLO is its wide field of view, which can image a large part of the retina for better diagnosis of the retinal diseases. On the other hand, during the imaging process, artefacts such as eyelashes and eyelids are also imaged along with the retinal area. This brings a big challenge on how to exclude these artefacts. In this paper, we propose a novel approach to automatically extract out true retinal area from an SLO image based on image processing and machine learning approaches. To reduce the complexity of image processing tasks and provide a convenient primitive image pattern, we have grouped pixels into different regions based on the regional size and compactness, called superpixels. The framework then calculates image based features reflecting textural and structural information and classifies between retinal area and artefacts. The experimental evaluation results have shown good performance with an overall accuracy of 92%.
History
School
- Science
Department
- Computer Science
Published in
IEEE Journal of Biomedical and Health InformaticsVolume
19Issue
4Pages
1472 - 1482Citation
HALEEM, M.S. ... et al, 2015. Retinal area detector from Scanning Laser Ophthalmoscope (SLO) images for diagnosing retinal diseases. IEEE Journal of Biomedical and Health Informatics, 19 (4), pp.1472-1482Publisher
© IEEEVersion
- AM (Accepted Manuscript)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/Publication date
2015Notes
This is the accepted manuscript version of the paper. © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.ISSN
2168-2194Publisher version
Language
- en
Administrator link
Usage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC