In this paper, we propose a robust minimum mean square error (MMSE) based beamforming
technique for multiantenna relay broadcast channels, where a multi-antenna base station transmits signal to single antenna users with the help of a multiantenna relay. The signal transmission from the base station to the single antenna users is completed in two time slots, where the relay receives the signal from the base station in the first time slot and it then forwards the received signal to different users based on amplify and forward protocol. We propose a robust beamforming technique for sum-power
minimization problem with imperfect channel state information (CSI) between the relay and the users. This robust scheme is developed based on the worst-case optimization framework and Nemirovski
Lemma by incorporating uncertainties in the CSI. The original optimization problem is divided into three subproblems due to joint non-convexity in terms of beamforming vectors at the base station, the relay amplification matrix, and receiver coefficients. These subproblems are formulated into a convex optimization framework by exploiting Nemirovski Lemma, and an iterative algorithm is developed by
alternatively optimizing each of them with channel uncertainties. In addition, we provide an optimization framework to evaluate the achievable worst-case mean square error (MSE) of each user for a given set of design parameters. Simulation results have been provided to validate the convergence of the proposed algorithm.
History
School
Loughborough University London
Published in
IEEE Transactions on Vehicular Technology
Citation
CUMANAN, K. ...et al., Robust MMSE beamforming for multiantenna relay networks. IEEE Transactions on Vehicular Technology, 66 (5), pp. 3900-3912.