Understanding the wetting properties of premelting films requires knowledge of the film’s equation
of state, which is not usually available. Here we calculate the disjoining pressure curve of premelting
films, and perform a detailed thermodynamic characterization of premelting behavior on ice. Analysis of the density profiles reveals the signature of weak layering phenomena, from one to two and
from two to three water molecular layers. However, disjoining pressure curves, which closely follow
expectations from a renormalized mean field liquid state theory, show that there are no layering
phase transitions in the thermodynamic sense along the sublimation line. Instead, we find that
transitions at mean field level are rounded due to capillary wave fluctuations. We see signatures
that true first order layering transitions could arise at low temperatures, for pressures between the
metastable line of water/vapor coexistence and the sublimation line. The extrapolation of the disjoining pressure curve above water vapor saturation displays a true first order phase transition from
a thin to a thick film consistent with experimental observations.