JOURNAL_JCN.pdf (310.71 kB)
Download fileSWIPT in MISO full-duplex systems
journal contribution
posted on 2018-08-13, 13:43 authored by Alexander A. Okandeji, Muhammad R. Khandaker, Kai-Kit Wong, Gan Zheng, Yangyang Zhang, Zhongbin Zheng, Ruopeng LiuThis paper investigates a multiuser multiple-input singleoutput (MISO) full-duplex (FD) system for simultaneous wireless information and power transfer (SWIPT), in which a multiantenna base station (BS) simultaneously sends wirelessly information and power to a set of single-antenna mobile stations (MSs) using power splitters (PSs) in the downlink and receives information in the uplink in FD mode. In particular, we address the joint design of the receive PS ratio and the transmit power at the MSs, and the beamforming matrix at the BS under signal-to-interferenceplus- noise ratio (SINR) and the harvested power constraints. Using semidefinite relaxation (SDR), we obtain the solution to the problem with imperfect channel state information (CSI) of the selfinterfering channels. Furthermore, we propose another suboptimal zero-forcing (ZF) based solution by separating the optimization of the transmit beamforming vector and the PS ratio. Simulation results are provided to evaluate the performance of the proposed beamforming designs.
Funding
This research was supported by the Presidential Special Scholarship Scheme for Innovation and Development (PRESSID), Federal Republic of Nigeria. In addition, this work was also supported in part by the EPSRC under grants EP/K015893/1 and EP/N008219/1, Shenzhen Science and Technology Plan (JCYJ20151015165322766 and JCYJ20151015165557141), Composite intelligent materials engineering laboratory, State Key Laboratory of Meta-RF Electromagnetic Modulation Technology (2011DQ782011), and Shenzhen Key Laboratory of Artificial Microstructure Design (CXB201109210099A).
History
School
- Mechanical, Electrical and Manufacturing Engineering