Herein, we describe a custom-made bipedal robot that uses electromagnets for performing movements as opposed to conventional DC motors. The robot uses machine learning to stabilize its self by taking steps. The results of several machine learning techniques for step decision are described. The robot does not use electric motors as actuators. As a result, it makes imprecise movements and is inherently unstable. To maintain stability, it must take steps. Classifiers are required to learn from users about when and which leg to move to maintain stability and locomotion. Classifiers such as Decision tree, Linear/Quadratic Discriminant, Support Vector Machine, K-Nearest Neighbor, and Neural Networks are trained and compared. Their performance/accuracy is noted.
Funding
The project is partially funded from Innovate UK’s scheme “Emerging and Enabling Technologies” and Center of Doctoral Training of Embedded Intelligence
(CDT-EI) funded from “Engineering and Physical Sciences Research Council” of UK.
History
School
Sport, Exercise and Health Sciences
Published in
International Journal of Mechanical Engineering and Robotics Research
Volume
7
Issue
4
Pages
379 - 384
Citation
KOUPPAS, C. ... et al, 2018. S.A.R.A.H.: The bipedal robot with machine learning step decision making. International Journal of Mechanical Engineering and Robotics Research, 7 (4), pp.379-384.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2018-07-08
Publication date
2018-07-01
Notes
This is an Open Access Article. It is published by IJMERR under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND). Full details of this licence are available at: http://creativecommons.org/licenses/by-nc-nd/4.0/