Schrödinger operators with complex sparse potentials
We establish quantitative upper and lower bounds for Schrödinger operators with complex potentials that satisfy some weak form of sparsity. Our first result is a quantitative version of an example, due to S. Bögli (Commun Math Phys 352:629–639, 2017), of a Schrödinger operator with eigenvalues accumulating to every point of the essential spectrum. The second result shows that the eigenvalue bounds of Frank (Bull Lond Math Soc 43:745–750, 2011 and Trans Am Math Soc 370:219–240, 2018) can be improved for sparse potentials. The third result generalizes a theorem of Klaus (Ann Inst H Poincaré Sect A (N.S.) 38:7–13, 1983) on the characterization of the essential spectrum to the multidimensional non-selfadjoint case. The fourth result shows that, in one dimension, the purely imaginary (non-sparse) step potential has unexpectedly many eigenvalues, comparable to the number of resonances. Our examples show that several known upper bounds are sharp.
History
School
- Science
Department
- Mathematical Sciences
Published in
Communications in Mathematical PhysicsVolume
392Issue
3Pages
951 - 992Publisher
SpringerVersion
- VoR (Version of Record)
Rights holder
© The AuthorPublisher statement
This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/Acceptance date
2022-02-22Publication date
2022-04-05Copyright date
2022ISSN
0010-3616eISSN
1432-0916Publisher version
Language
- en