DOCUMENT
1/1
Sensory detection thresholds are modulated across the cardiac cycle: evidence that cutaneous sensibility is greatest for systolic stimulation
journal contribution
posted on 2014-07-08, 14:24 authored by Louisa Edwards, Christopher Ring, David McIntyre, John B. Winer, Una MartinThe visceral afferent feedback hypothesis proposes that sensorimotor function is impaired by cortical inhibition associated with increased baroreceptor activation. This study is the first to examine the effects of naturally occurring variations in baroreceptor activity across the cardiac cycle on cutaneous sensory detection thresholds. In each trial, an electrocutaneous stimulus was delivered to the index finger at one of three intervals (0, 300, 600 ms) after the R-wave of the electrocardiogram. Separate interleaving up-down staircases were used to determine the 50% detection threshold for each R-wave to stimulation interval. Cutaneous sensory detection thresholds were lower for stimuli presented at R+300 ms than R+0 ms or R+600 ms. The finding that cutaneous sensibility was greater when stimulated during systole than diastole may be accounted for by a modified afferent feedback hypothesis. Copyright © 2009 Society for Psychophysiological Research.
History
School
- Sport, Exercise and Health Sciences
Published in
PsychophysiologyVolume
46Issue
2Pages
252 - 256Citation
EDWARDS, L. ... et al, 2009. Sensory detection thresholds are modulated across the cardiac cycle: evidence that cutaneous sensibility is greatest for systolic stimulation. Psychophysiology, 46 (2), pp. 252 - 256Publisher
Wiley / © Society for Psychophysiological ResearchVersion
- AM (Accepted Manuscript)
Publication date
2009Notes
This is the peer reviewed version of the following article: EDWARDS, L. ... et al, 2009. Sensory detection thresholds are modulated across the cardiac cycle: evidence that cutaneous sensibility is greatest for systolic stimulation. Psychophysiology, 46 (2), pp. 252 - 256 , which has been published in final form at: http://dx.doi.org/10.1111/j.1469-8986.2008.00769.x . This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.ISSN
0048-5772eISSN
1469-8986Publisher version
Language
- en