Loughborough University
Browse

Sequential anaerobic and electro-Fenton processes mediated by W and Mo oxides for degradation/mineralization of azo dye methyl orange in photo assisted microbial fuel cells

Download (794.11 kB)
journal contribution
posted on 2019-03-01, 11:59 authored by Qiang Wang, Liping Huang, Xie Quan, Gianluca Li-Puma
The intensification of the degradation and mineralization of the azo dye methyl orange (MO) in contaminated water with simultaneous production of renewable electrical energy was achieved in photo-assisted microbial fuel cells (MFCs) operated sequentially under anaerobic - aerobic processes, in the presence of Fe(III) and W and Mo oxides catalytic species. In this novel process, the W and Mo oxides deposited on the graphite felt cathodes accelerated electron transfer and the reductive decolorization of MO. Simultaneously, the mineralization of MO and intermediate products was intensified by the production of hydroxyl radicals (HO[rad]) produced by (i) the photoreduction of Fe(III) to Fe(II), and by (ii) the reaction of the photochemically and electrochemically produced Fe(II) with hydrogen peroxide, which was produced in-situ during the aerobic stage. Under anaerobic conditions, the reductive decolorization of MO was driven by cathodic electrons, while the partial oxidation of the intermediates proceeded through holes oxidation, producing N,N-dimethyl-p-phenylenediamine. In contrast, under aerobic conditions superoxide radicals (O2[rad]−) were predominant to HO[rad], forming 4-hydroxy-N,N-dimethylaniline. In the presence of Fe(III) and under aerobic conditions, the oxidation of the intermediate products driven by HO[rad] superseded that of O2[rad]−, yielding phenol and amines, via the oxidation of 4-hydroxy-N,N-dimethylaniline and N,N-dimethyl-p-phenylenediamine. These sequential anaerobic and electro-Fenton processes led to the production of benzene and significantly faster oxidation reactions, compared to either the anaerobic or the aerobic operation in the presence of Fe(III). Complete degradation and mineralization (96.8 ± 3.5%) of MO (20 mg/L) with simultaneous electricity production (0.0002 kW h/kg MO) was therefore achieved with sequential anaerobic (20 min) - aerobic (100 min) operation in the presence of Fe(III) (10 mg/L). This study demonstrates an alternative and environmentally benign approach for efficient remediation of azo dye contaminated water with simultaneous production of renewable energy.

Funding

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 51578104 and 21777017), and the Programme of Introducing Talents of Discipline to Universities (B13012).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Applied Catalysis B: Environmental

Volume

245

Pages

672 - 680

Citation

WANG, Q. ... et al, 2019. Sequential anaerobic and electro-Fenton processes mediated by W and Mo oxides for degradation/mineralization of azo dye methyl orange in photo assisted microbial fuel cells. Applied Catalysis B: Environmental, 245, pp.672-680.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This paper was accepted for publication in the journal Applied Catalysis B: Environmental and the definitive published version is available at https://doi.org/10.1016/j.apcatb.2019.01.026.

Acceptance date

2019-01-09

Publication date

2019-01-10

ISSN

0926-3373

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC