Loughborough University
Browse

Sex differences in fatigability following exercise normalised to the power-duration relationship

Download (2.05 MB)
journal contribution
posted on 2020-12-16, 10:02 authored by Paul Ansdell, Jakob SkarabotJakob Skarabot, Elliott Atkinson, Sarah Corden, Amber Tygart, Kirsty Hicks, Kevin Thomas, Sandra Hunter, Glyn Howatson, Stuart Goodall
Due to morphological differences, females demonstrate greater fatigue resistance of locomotor muscle during single‐limb and whole‐body exercise modalities. Whilst females sustain a greater relative intensity of single‐limb, isometric exercise than males, limited investigation has been performed during whole‐body exercise. Accordingly, this study established the power‐duration relationship during cycling in 18 trained participants (8 females). Subsequently, constant‐load exercise was performed at critical power (CP)‐matched intensities within the heavy and severe domains, with the mechanisms of fatigability assessed via non‐invasive neurostimulation, near‐infrared spectroscopy, and pulmonary gas exchange during and following exercise. Relative CP (72±5 vs. 74±2% Pmax, p = 0.210) and curvature constant (51±11 vs. 52±10 J·Pmax−1, p = 0.733) of the power‐duration relationship were similar between males and females. Subsequent heavy (p = 0.758) and severe intensity (p = 0.645) exercise time to task failures were not different between sexes. However, females experienced lesser reductions in contractile function at task failure (p≤0.020), and greater vastus lateralis oxygenation (p≤0.039) during both trials. Reductions in voluntary activation occurred following both trials (p<0.001), but were less in females following the heavy trial (p = 0.036). Furthermore, during the heavy‐intensity trial only, corticospinal excitability was reduced at the cortical (p = 0.020) and spinal (p = 0.036) levels, but these reductions were not sex‐dependent. Other than a lower respiratory exchange ratio in the heavy trial for females (p = 0.039), no gas exchange variables differed between sexes (p≥0.052). Collectively, these data demonstrate that whilst the relative power‐duration relationship is not different between males and females, the mechanisms of fatigability during CP‐matched exercise above and below critical power are mediated by sex.

History

School

  • Sport, Exercise and Health Sciences

Published in

The Journal of Physiology

Volume

598

Issue

24

Pages

5717 - 5737

Publisher

Wiley

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Wiley under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2020-09-07

Publication date

2020-09-26

Copyright date

2020

ISSN

0022-3751

eISSN

1469-7793

Language

  • en

Depositor

Dr Jakob Skarabot. Deposit date: 21 September 2020

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC