Goffin2021_Article_SimulatedAndExperimentalAnalys.pdf (4.47 MB)
Download fileSimulated and experimental analysis of laser beam energy profiles to improve efficiency in wire-fed laser deposition
journal contribution
posted on 2021-04-23, 08:41 authored by Nick Goffin, John TyrerJohn Tyrer, Lewis JonesLewis Jones, Rebecca HigginsonRebecca HigginsonAbstractLaser cladding is a well-established technique, with the majority of prior numerical modelling work focused on delivery and melt pool behaviour of powder-based processes. This research presents new investigations into optimised laser beam shaping for the unique characteristics of wire-based processes, where direct substrate heating, as well as heat transfer between the wire and substrate, is important. The value of this subject is the improved deposition rates and dense metallic structures that can be achieved by wire-based deposition processes compared to powder-based material delivery. The within-wire temperature distribution (AISI 316 stainless steel), the heat transfer and direct heating of the substrate (mild steel) are modelled via heat transfer simulations, with three laser beam irradiance distributions. This analysis identified the removal of localised high-temperature regions typically associated to standard Gaussian distributions, and the improved substrate heating that a uniform square beam profile can provide. Experiments using pre-placed wire and a 1.2 kW CO2 laser were analysed using cross-sectional optical microscopy to provide model validation and evidence of improved wire-substrate wetting, while maintaining favourable austenitic metallurgy in the clad material. A key finding of this work is a reduction, from 480 to 190 W/mm2, in the required irradiance for effective melt pool formation when changing from a Gaussian distribution to a uniform square distribution. This also provided a 50% reduction in total energy. The potential improvements to energy efficiency, cost reductions and sustainability improvements are recognised and discussed.
Funding
The Engineering and Physical Sciences Research Council (EPSRC) has funded this research via a research studentship grant
History
School
- Mechanical, Electrical and Manufacturing Engineering
- Aeronautical, Automotive, Chemical and Materials Engineering
Department
- Materials
Published in
The International Journal of Advanced Manufacturing TechnologyVolume
114Issue
9-10Pages
3021-3036Publisher
Springer Science and Business Media LLCVersion
- VoR (Version of Record)
Rights holder
© The authorsPublisher statement
This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Acceptance date
2021-03-29Publication date
2021-04-20Copyright date
2021ISSN
0268-3768eISSN
1433-3015Publisher version
Language
- en