Loughborough University
HumeidaPinfieldChallis2013 final revised submitted2 for IR.pdf (401.54 kB)

Simulation of ultrasonic array imaging of composite materials with defects

Download (401.54 kB)
journal contribution
posted on 2013-10-11, 12:03 authored by Yousif Humeida, Valerie PinfieldValerie Pinfield, Richard E. Challis, Paul D. Wilcox, Chuan Li
Ultrasonic transducer arrays are extensively used for the nondestructive evaluation of materials for aerospace and other applications. However, their use with composites requires some technique development because of reflections at the layer boundaries and the effects of attenuation. When used in full matrix capture mode, algorithms such as the total focusing method (TFM) must be applied to obtain the image. In composite materials, improvement to the algorithm is required to include the effects of material anisotropy (affecting wave speed) and optimum aperture limits to optimize the signal-tonoise ratio and location detection for a defect in the material. This paper presents simulations of the ultrasonic array signals in multilayer anisotropic materials with and without a simulated defect. A kernel model for plane wave propagation in the material is combined with an angular spectrum decomposition (for finite transducer elements) and transducer frequency response, to model the full array signals. Inclusion of the defect is through its far-field scattering response. The model facilitates the study of imaging algorithm development by identification of the effects of anisotropy, signal-to-noise ratio, and aperture limit. An analytical method for the calculation of the effective group velocity in the composite at low frequency is demonstrated, permitting rapid calculation of time delay laws in practice. © 1986-2012 IEEE.


This work was supported by the UK Research Centre in NDE Targeted Programme, by the Engineering and Physical Sciences Research Council [grant number EP/H01196X/1], Airbus, and Rolls Royce.



  • Aeronautical, Automotive, Chemical and Materials Engineering


  • Chemical Engineering


HUMEIDA, Y. ... et al, 2013. Simulation of ultrasonic array imaging of composite materials with defects. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60 (9), pp. 1935 - 1948




  • AM (Accepted Manuscript)

Publication date



This article was published in the journal, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control [© IEEE]. The definitive version is available at: http://dx.doi.org/10.1109/TUFFC.2013.2778




  • en

Usage metrics

    Loughborough Publications