CMS delamination IWCMM18-revised.pdf (150.28 kB)
Download file

Simulations of delamination in CFRP laminates: effect of microstructural randomness

Download (150.28 kB)
journal contribution
posted on 02.09.2009, 15:27 by Zahid R. Khokhar, Ian A. Ashcroft, Vadim SilberschmidtVadim Silberschmidt
Due to their high specific strength and stiffness, fibre-reinforced composite materials are being increasingly used in structural applications where a high level of performance is important (e.g. aerospace, automotive, offshore structures, etc.). Performance in service of these composites is affected by multi-mechanism damage evolution under loading and environmental conditions. For instance, carbon fibre-reinforced laminates demonstrate a wide spectrum of failure mechanisms such as matrix cracking and delamination. These damage mechanisms can result in significant deterioration of the residual stiffness and load-bearing capacity of composite components and should be thoroughly investigated. The delamination failure mechanism is studied in this paper for a double cantilever beam (DCB) loaded in Mode I. Several sensitivity studies are performed to analyse the effects of mesh density and of parameters of the cohesive law on the character of damage propagation in laminates. The microstructural randomness of laminates that is responsible for non-uniform distributions of stresses in them even under uniform loading conditions is accounted for in the model. The random properties are introduced with the use of Weibull’s two-parameter probability density function. Several statistical realisations are carried out which show that the effect of microstructure could significantly affect the macroscopic response emphasizing the need to account for microstructural randomness for accurate predictions of load-carrying capacity of laminate composite structures.



  • Mechanical, Electrical and Manufacturing Engineering


KHOKHAR, Z.R., ASHCROFT, I.A. and SILBERSCHMIDT, V.V., 2009. Simulations of delamination in CFRP laminates: effect of microstructural randomness. Computational Materials Science, 46 (3), pp. 607-613.


© Elsevier


AM (Accepted Manuscript)

Publication date



This is article was published in the journal, Computational Materials Science [© Elsevier] and the definitive version is available at: