JER859791_Accepted.pdf (2.14 MB)
Download file

Simulations of engine knock flow field and wave-induced fatigue of a downsized gasoline engine

Download (2.14 MB)
journal contribution
posted on 28.06.2019, 12:36 by Wen-Rui Wang, Yu Lu, Zhiyong Li, Han LiHan Li
A mathematical correlation is developed, based on the thermodynamic model of a downsized gasoline engine, to establish the numerical relationship among the thermodynamic parameters of the combustion chamber. In the developed numerical model, the in-cylinder pressure curves of various operation condition are simulated by varying the air-fuel ratio in the cylinder, and the associated knock characteristics are recorded. The accuracy of the numerical simulation results is verified against the knock excitation experiment. Then, based on the Rover K16 gasoline engine, a simulation model is developed to simulate the engine knock in the combustion chamber and observe the force acting on the top surface of the piston. The results show that the forces act on the piston top surface are varying at various locations at the same time, and the largest forces occur at the edge of the piston and followed by the piston centre. Then, by comparing the thermo-mechanical coupling strength of the piston under different operating conditions, the results show that the occurrence of the knocking does not exceed the piston's strength limit. However, the stress and deformation value of the piston is increased significantly, and the failure point of the piston position is changed. Finally, based on the calibrated strength results, the piston durability is predicted for various engine knock conditions. The results show that the initial damage of piston in the process of detonation at the surface of the piston pin hole and the joint of the piston cavity. The gasoline engine finally has a predicted mileage of 253,440 km continuously which meet the prescribed mileage of 220,000 km.



  • Design

Published in

International Journal of Engine Research


WANG, W-R. ... et al., 2019. Simulations of engine knock flow field and wave-induced fatigue of a downsized gasoline engine. International Journal of Engine Research, Doi: 10.1177/1468087419859791


© IMechE 2019. Published by SAGE Publications


AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:

Acceptance date


Publication date



This paper was accepted for publication in the journal International Journal of Engine Research and the definitive published version is available at