Loughborough University
Browse

Simulations of the human heat balance during Mount Everest summit attempts in spring and winter

Download (1.47 MB)
journal contribution
posted on 2024-01-22, 17:23 authored by Krzysztof Błażejczyk, George HavenithGeorge Havenith, Robert K Szymczak

The majority of research dealing with the impacts of the Himalayan climate on human physiology focuses on low air temperature, high wind speed, and low air pressure and oxygen content, potentially leading to hypothermia and hypoxia. Only a few studies describe the influence of the weather conditions in the Himalayas on the body’s ability to maintain thermal balance. The aim of the present research is to trace the heat exchange between humans and their surroundings during a typical, 6-day summit attempt of Mount Everest in the spring and winter seasons. Additionally, an emergency night outdoors without tent protection is considered. Daily variation of the heat balance components were calculated by the MENEX_HA model using meteorological data collected at automatic weather stations installed during a National Geographic expedition in 2019–2020. The data represent the hourly values of the measured meteorological parameters. The research shows that in spite of extreme environmental conditions in the sub-summit zone of Mount Everest during the spring weather window, it is possible to keep heat equilibrium of the climbers’ body. This can be achieved by the use of appropriate clothing and by regulating activity level. In winter, extreme environmental conditions in the sub-summit zone make it impossible to maintain heat equilibrium and lead to hypothermia. The emergency night in the sub-peak zone leads to gradual cooling of the body which in winter can cause severe hypothermia of the climber’s body. At altitudes < 7000 m, climbers should consider using clothing that allows variation of insulation and active regulation of their fit around the body.

History

School

  • Design and Creative Arts

Department

  • Design

Published in

International Journal of Biometeorology

Volume

68

Issue

2

Pages

351 - 366

Publisher

Springer

Version

  • VoR (Version of Record)

Rights holder

© The Author(s)

Publisher statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Acceptance date

2023-11-29

Publication date

2023-12-19

Copyright date

2023

ISSN

0020-7128

eISSN

1432-1254

Language

  • en

Depositor

Prof George Havenith. Deposit date: 9 January 2024

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC