grimshaw2002.pdf (591.03 kB)
Download file

Solitary waves with recirculation zones in axisymmetric rotating flows

Download (591.03 kB)
journal contribution
posted on 23.06.2006, 14:37 authored by Oleg G. Derzho, Roger Grimshaw
In this paper, we describe a theoretical asymptotic model for large-amplitude travelling solitary waves in an axially symmetric rotating flow of an inviscid incompressible fluid confined in an infinitely long circular tube. By considering the special, but important, case when the upstream flow is close to that of uniform axial flow and uniform rotation, we are able to construct analytical solutions which describe solitary waves with `bubbles', that is, recirculation zones with reversed flow, located on the axis of the tube. Such waves have amplitudes which slightly exceed the critical amplitude, where there is incipient flow reversal. The effect of the recirculation zone is to introduce into the governing amplitude equation an extra nonlinear term, which is proportional to the square of the difference between the wave amplitude and the critical amplitude. We consider in detail a special, but representative, class of upstream inflow conditions. We find that although the structure of the recirculation zone is universal, the presence of such solitary waves is quite sensitive to the actual upstream axial and rotational velocity shear configurations. Our results are compared with previous theories and observations, and related to the well-known phenomenon of vortex breakdown.



  • Science


  • Mathematical Sciences


605215 bytes


DERZHO, O.G. and GRIMSHAW, R.H.J., 2002. Solitary waves with recirculation zones in axisymmetric rotating flows. Journal of Fluid Mechanics, 464, pp. 217-250.


© Cambridge University Press

Publication date



This article was published in the journal, Journal of Fluid Mechanics [© Cambridge University Press] and is available at:





Usage metrics