This work is focused on the spatio-temporal monitoring of winter wheat inoculated with various levels of yellow rust inoculum during the entire growth season. A dedicated workflow is devised to obtain time-series five-bands (visible-infrared) aerial imageries with a multispectral camera and an Unmanned Aerial Vehicle. A number of spectral indices are drawn so that the sensitive ones can be identified by statistical dependency analysis; particularly, their discriminating capabilities are evaluated at different stages for both wheat pixel segmentation and yellow rust severity. Then the spatial-temporal changes of sensitive bands/indices are evaluated and analysed quantitatively. A validation field experiment was designed in 2017-2018 by inoculating wheat with one of the six levels of yellow rust inoculum. Five-bands RedEdge camera on-board DJI S1000 was used to capture aerial images at eight time points covering the entire growth season at an altitude of about 20 meters with a ground resolution of 1-1.5 cm/pixel. Experimental results via spatio-temporal analysis show that: (1) various bands/indices should be used for wheat segmentation at different stages; (2) no bands/indices differences are observed for yellow rust inoculated wheat plots in both incubation stage (9 days after inoculation) and early onset stage (25 days after inoculation); (3) NIR and Red are the sensitive bands for wheat yellow rust in disease stages (45 days after inoculation); and their normalized difference NDVI index provides an even higher statistical dependency; (4) bands/indices’ sensitivity to yellow rust changes over time and decreases in later Heading stage until being very low in Ripening stage (61 days after inoculation). This experimental study provides a crucial guidance for future early spatio-temporal yellow rust monitoring at farmland scales.
Funding
Science and Technology Facilities Council (STFC) under Newton fund with Grant No. ST/N006852/1
National Natural Science Foundation of China with Grant No. 31772102
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
This paper was accepted for publication in the journal Computers and Electronics in Agriculture and the definitive published version is available at https://doi.org/10.1016/j.compag.2019.105035.