We investigate the stability of thin liquid curtains with respect to two-dimensional perturbations. The dynamics of perturbations with wavelengths exceeding (or comparable to) the curtain's thickness are examined using the lubrication approximation (or a kind of geometric optics). It is shown that, contrary to the previous theoretical results, but in agreement with the experimental ones, all curtains are stable with respect to small perturbations. Large perturbations can still be unstable, however, but only if they propagate upstream and, thus, disrupt the curtain at its outlet. This circumstance enables us to obtain an effective stability criterion by deriving an existence condition for upstream propagating perturbations.
Funding
The authors acknowledge support from the Science Foundation Ireland under Grants No. 11/RFP.1/MTH3281 and No.
12/IA/1683.
History
School
Science
Department
Mathematical Sciences
Published in
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Volume
94
Issue
4
Citation
BENILOV, E.S., BARROS, R. and O'BRIEN, S.B.G., 2016. Stability of thin liquid curtains. Physical Review E, 94 (4), 043110.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2016-05-19
Publication date
2016-10-21
Notes
This paper was published in the journal Physical Review E and the definitive published version is available at https://doi.org/10.1103/PhysRevE.94.043110.