The search for edge-disjoint Hamilton cycles in star graphs is important for the design of interconnection network topologies. We define automorphisms for star graphs St n of degree n−1, for every positive odd integer n, which yield permutations of labels for the edges of St n taken from the set of integers between 1 and ⌊ n/2 ⌋. By decomposing these permutations into permutation cycles, we are able to identify edge-disjoint Hamilton cycles that are automorphic images of a known Hamilton cycle in St n . Our method produces a better than two-fold improvement from ⌊ ϕ (n)/10 ⌋ to ⌊ 2ϕ (n)/9 ⌋, where ϕ is the Euler function, for the known number of edge-disjoint Hamilton cycles in St n for all odd integers n. For prime n, the improvement is from ⌊ n/8 ⌋ to ⌊ n/5 ⌋, and we can extend this result to the case when n is the power of a prime greater than 7.
History
School
Science
Department
Computer Science
Citation
DERAKHSHAN, P. and HUSSAK, W., 2013. Star graph automorphisms and disjoint Hamilton cycles.
International Journal of Computer Mathematics, 90 (3), pp. 483 - 496.