JDErevised.pdf (306.38 kB)
Download fileStationary solutions of SPDEs and infinite horizon BDSDEs with non-Lipschitz coefficients
journal contribution
posted on 2014-07-21, 10:18 authored by Qi Zhang, Huaizhong ZhaoWe prove a general theorem that the L (R ; R) ⊗ L (R ; R)-valued solution of an infinite horizon backward doubly stochastic differential equation, if exists, gives the stationary solution of the corresponding stochastic partial differential equation. We prove the existence and uniqueness of the L (R ; R) ⊗ L (R ; R)-valued solutions for backward doubly stochastic differential equations on finite and infinite horizon with linear growth without assuming Lipschitz conditions, but under the monotonicity condition. Therefore the solution of finite horizon problem gives the solution of the initial value problem of the corresponding stochastic partial differential equations, and the solution of the infinite horizon problem gives the stationary solution of the SPDEs according to our general result.
Funding
Q.Z. would like to acknowledge the financial support of the National Basic Research Program of China (973 Program) with Grant No. 2007CB814904.
History
School
- Science
Department
- Mathematical Sciences