Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate
The design of molecular receptors that bind and sense anions in biologically relevant aqueous solutions is a key challenge in supramolecular chemistry. The recognition of inorganic phosphate is particularly challenging because of its high hydration energy and pH dependent speciation. Adenosine monophosphate (AMP) represents a valuable but elusive target for supramolecular detection because of its structural similarity to the more negatively charged anions, ATP and ADP. We report two new macrocyclic Eu(III) receptors capable of selectively sensing inorganic phosphate and AMP in water. The receptors contain a sterically demanding 8-(benzyloxy)quinoline pendant arm that coordinates to the metal centre, creating a binding pocket suitable for phosphate and AMP, whilst excluding potentially interfering chelating anions, in particular ATP, bicarbonate and lactate. The sensing selectivity of our Eu(III) receptors follows the order AMP > ADP > ATP, which represents a reversal of the order of selectivity observed for most reported nucleoside phosphate receptors. We have exploited the unique host–guest induced changes in emission intensity and lifetime for the detection of inorganic phosphate in human serum samples, and for monitoring the enzymatic production of AMP in real-time.
Funding
Luminescent Host Molecules for Multisite Recognition of Polyphosphate Anions
Engineering and Physical Sciences Research Council
Find out more...High-Throughput Luminescence Assay for Sulfotransferase Activity
Biotechnology and Biological Sciences Research Council
Find out more...History
School
- Science
Department
- Chemistry
Published in
Chemical ScienceVolume
13Issue
12Pages
3386 - 3394Publisher
Royal Society of Chemistry (RSC)Version
- VoR (Version of Record)
Rights holder
© The AuthorsPublisher statement
This is an Open Access Article. It is published by the Royal Society of Chemistry under the Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/3.0/Acceptance date
2022-02-10Publication date
2022-02-11Copyright date
2022ISSN
2041-6520eISSN
2041-6539Publisher version
Language
- en