Stochastic transitions: Paths over higher energy barriers can dominate in the early stages
The time evolution of many physical, chemical, and biological systems can be modelled by stochastic transitions between the minima of the potential energy surface describing the system of interest. We show that in cases where there are two (or more) possible pathways that the system can take, the time available for the transition to occur is crucially important. The well-known results of reaction rate theory for determining the rates of the transitions apply in the long-time limit. However, at short times, the system can instead choose to pass over higher energy barriers with much higher probability, as long as the distance to travel in phase space is shorter. We construct two simple models to illustrate this general phenomenon. We also apply a version of the geometric minimum action method algorithm of Vanden-Eijnden and Heymann [J. Chem. Phys. 128, 061103 (2008)] to determine the most likely path at both short and long times.
Funding
Defect dynamics in energy materials
Engineering and Physical Sciences Research Council
Find out more...History
School
- Science
Department
- Mathematical Sciences
Published in
The Journal of Chemical PhysicsVolume
158Issue
12Publisher
AIP PublishingVersion
- VoR (Version of Record)
Rights holder
© The AuthorsPublisher statement
This is an Open Access Article. It is published by AIP Publishing under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/Acceptance date
2023-03-05Publication date
2023-03-28Copyright date
2023ISSN
0021-9606eISSN
1089-7690Publisher version
Language
- en