With large spin-orbit coupling, the electron configuration in d-metal oxides is prone to highly anisotropic exchange interactions and exotic magnetic properties. In 5d5 iridates, given the existing variety of crystal structures, the magnetic anisotropy can be tuned from antisymmetric to symmetric Kitaev-type, with interaction strengths that outsize the isotropic terms. By many-body electronic-structure calculations we here address the nature of the magnetic exchange and the intriguing spin-glass behavior of Li2RhO3, a 4d5 honeycomb oxide. For pristine crystals without Rh-Li site inversion, we predict a dimerized ground state as in the isostructural 5d5 iridate Li2IrO3, with triplet spin dimers effectively placed on a frustrated triangular lattice. With Rh-Li anti-site disorder, we explain the observed spin-glass phase as a superposition of different, nearly degenerate symmetry-broken configurations.
Funding
L. H. acknowledges financial support from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). This work is supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.
History
School
Science
Department
Physics
Published in
Scientific Reports
Volume
5
Citation
KATUKURI, V.M. ... et al, 2015. Strong magnetic frustration and anti-site disorder causing spin-glass behavior in honeycomb Li2RhO3. Scientific Reports, 5, Article number 14718.
Publisher
Nature Publishing Group
Version
VoR (Version of Record)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/
Publication date
2015
Notes
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/