posted on 2016-09-06, 13:24authored byD. Mark Powell, Annie Ockelford, Stephen Rice, John HillierJohn Hillier, Thao Nguyen, Ian Reid, Nicholas J. Tate, David Ackerley
Differences in the structure of mobile armors formed at three different flow strengths have been investigated in a laboratory flume. The temporal evolution of the bed surfaces and the properties of the final beds were compared using metrics of surface grain size, microtopography, and bed organization at both grain and mesoscales. Measurements of the bed condition were obtained on nine occasions during each experiment to describe the temporal evolution of the beds. Structured mobile armors formed quickly in each experiment. At the grain scale (1–45 mm; 9 ≤ Ds50 ≤ 17 mm where Ds50 is the median surface particle size), surface complexity decreased and bed roughness increased in response to surface coarsening and the development of the mobile armor. Particles comprising the armor also became flow aligned and developed imbrication. At a larger scale (100–200 mm), the surface developed a mesoscale topography through the development of bed patches with lower and higher elevations. Metrics of mobile armor structure showed remarkable consistency over prolonged periods of near-constant transport, demonstrating for the first time that actively transporting surfaces maintain an equilibrium bed structure. Bed structuring was least developed in the experiments conducted at the lowest flow strength. However, little difference was observed in the structural metrics of the mobile armors generated at higher flows. Although the range of transport rates studied was limited, the results suggest that the structure of mobile armors is insensitive to the formative transport rate except when rates are low (τ* ≈ 0.03 where τ* is the dimensionless shear stress).
Funding
This research was supported by the
Natural Environment Research Council
of the UK through NE/H020772/1
(awarded to Powell) and NE/H020993/1
(awarded to Rice). The digital elevation
models analyzed in this study are
archived at the University of Leicester
and are freely available from the lead
author upon request.
History
School
Social Sciences
Department
Geography and Environment
Published in
Journal of Geophysical Research. Earth Surface
Citation
POWELL, D. ... et al., 2016. Structural properties of mobile armors formed
at different flow strengths in gravel-bed rivers. Journal of Geophysical Research: Earth Surface. DOI: 10.1002/2015JF003794.
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/