Biodegradable poly(DL-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) microparticles with tunable size, shape, internal structure and surface morphology were produced by counter-current flow focusing in axisymmetric (3D) glass capillary devices. The dispersed phase was composed of 0.5-2 wt% polymer solution in a volatile
2
organic solvent (ethyl acetate or dichloromethane) and the continuous phase was 5 wt% aqueous poly(vinyl alcohol) solution. The droplets with a coefficient of variation in dripping regime below 2.5 % were evaporated to form polymeric particles with uniform sizes ranging between 4-30 μm. The particle microstructure and surface roughness were modified by adding nanofiller (montmorillonite nanoclay) or porogen (2-methylpentane) in the dispersed phase to form less porous polymer matrix or porous particles with golf-ball-like dimpled surface, respectively. The presence of 2-4 wt% nanoclay in the host polymer significantly reduced the release rate of paracetamol and prevented the early burst release, as a result of reduced polymer porosity and tortuous path for the diffusing drug molecules. Numerical modelling results using the volume of fluid-continuum surface force model agreed well with experimental behaviour and revealed trapping of nanoclay particles in the dispersed phase upstream of the orifice at low dispersed phase flow rates and for 4 wt% nanoclay content, due to vortex formation. Janus PLA/PCL (polycaprolactone) particles were produced by solvent evaporation-induced phase separation within organic phase droplets containing 3 % (v/v) PLA/PCL (30/70 or 70/30) mixture in dichloromethane. A strong preferential adsorption of Rhodamine 6G dye onto PLA was utilized to identify PLA portions of the Janus particles by Confocal Laser Scanning Microscopy (CLSM). Uniform hemispherical PCL particles were produced by dissolution of PLA domes with acetone.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
ACS Applied Materials & Interfaces
Pages
151001053821009 - 151001053821009
Citation
EKANEM, E.E. ...et al., 2015. Structured biodegradable polymeric microparticles for drug delivery produced using flow focusing glass microfluidic devices. ACS Applied Materials & Interfaces, 7(41), pp 23132–23143.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/