Tuorila_System-Environment-Correlations-Qubit_Phys.Rev.Research.1.013004.(2019).pdf (1.22 MB)
Download file

System-environment correlations in qubit initialization and control

Download (1.22 MB)
journal contribution
posted on 28.08.2019, 08:21 authored by Jani Tuorila, Jürgen Stockburger, Tapio Ala-NissilaTapio Ala-Nissila, Joachim Ankerhold, Mikko Möttönen
The impressive progress in fabricating and controlling superconducting devices for quantum information processing has reached a level where reliable theoretical predictions need to account for quantum correlations that are not captured by the conventional modeling of contemporary quantum computers. This applies particularly to the qubit initialization as the process which crucially limits typical operation times. Here, we employ numerically exact methods to study realistic implementations of a transmon qubit embedded in electromagnetic environments focusing on the most important system-reservoir correlation effects such as the Lamb shift and entanglement. For the qubit initialization we find a fundamental trade-off between speed and accuracy which sets intrinsic constraints in the optimization of future reset protocols. Instead, the fidelities of quantum logic gates can be sufficiently accurately predicted by standard treatments. Our results can be used to accurately predict the performance of specific setups and also to guide future experiments in probing low-temperature properties of qubit reservoirs.

Funding

European Research Council under Grant No. 681311 (QUESS)

Academy of Finland through its QTF Centre of Excellence program Grants No. 312298 and No. 312300

German Science Foundation (DFG) through AN336/12-1

IQST

History

School

  • Science

Department

  • Mathematical Sciences

Published in

Physical Review Research

Volume

1

Issue

1

Publisher

American Physical Society

Version

VoR (Version of Record)

Publication date

2019-08-09

Copyright date

2019

eISSN

2643-1564

Language

en

Depositor

Prof Tapio Ala-Nissila

Article number

013004