Loughborough University
Browse

File(s) under permanent embargo

Reason: This item is currently closed access.

Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness

journal contribution
posted on 2015-05-15, 10:41 authored by Davide Filingeri, Damien Fournet, Simon HodderSimon Hodder, George HavenithGeorge Havenith
Humans sense the wetness of a wet surface though the somatosensory integration of thermal and tactile inputs generated by the interaction between skin and moisture. However, little is known on how wetness is sensed when moisture is produced via sweating. We tested the hypothesis that, in the absence of skin cooling, intermittent tactile cues, as coded by low-threshold skin mechanoreceptors, modulate the perception of sweat-induced skin wetness, independently of the level of physical wetness. Ten males (22 yr) performed an incremental exercise protocol during 2 trials designed to induce the same physical skin wetness but to induce lower (TIGHT-FIT) and higher (LOOSE-FIT) wetness perception. In the TIGHT-FIT, a tight fitting clothing ensemble limited intermittent skin-sweat-clothing tactile interactions. In the LOOSE-FIT, a loose fitting ensemble allowed free skin-sweat-clothing interactions. Heart rate, core and skin temperature, skin conductance (GSC), physical (wbody) and perceived skin wetness were recorded. Exercise-induced sweat production and physical wetness increased significantly (GSC: 3.1 µS, SD 0.3 to 18.8 µS, SD 1.3, p<0.01; wbody: 0.26 nd, SD 0.02, to 0.92 nd, SD 0.01, p<0.01) with no differences between TIGHT-FIT and LOOSE-FIT (p>0.05). However, the limited intermittent tactile inputs generated by the TIGHT-FIT ensemble reduced significantly whole-body and regional wetness perception (p<0.01). This reduction was more pronounced when between 40 and 80% of the body was covered in sweat. We conclude that the central integration of intermittent mechanical interactions between skin-sweat-clothing, as coded by low-threshold skin mechanoreceptors, significantly contributes to the ability to sense sweat-induced skin wetness.

Funding

Endevour Research Fellowship from the Australian Government, Department of Education; Loughborough University and Oxylane Research

History

School

  • Design

Published in

Journal of neurophysiology

Pages

jn.00141.2015 - ?

Citation

FILINGERI, D. et al., 2015. Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness. Journal of Neurophysiology (Article In Press)

Publisher

© American Physiological Society

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015

Notes

This article is closed access

ISSN

0022-3077

eISSN

1522-1598

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC