posted on 2014-10-15, 07:49authored byYuliang Dong, Junhua Kong, Si Lei Phua, Chenyang Zhao, Noreen Thomas, Xuehong Lu
In this article, liquid moisture transport behaviors of dual-layer electrospun nanofibrous mats are reported for the first time. The dual-layer mats consist of a thick layer of hydrophilic polyacrylonitrile (PAN) nanofibers with a thin layer of hydrophobic polystyrene (PS) nanofibers with and without interpenetrating nanopores, respectively. The mats are coated with polydopamine (PDOPA) to different extents to tailor the water wettability of the PS layer. It is found that with a large quantity of nanochannels, the porous PS nanofibers exhibit a stronger capillary effect than the solid PS nanofibers. The capillary motion in the porous PS nanofibers can be further enhanced by slight surface modification with PDOPA while retaining the large hydrophobicity difference between the two layers, inducing a strong push–pull effect to transport water from the PS to the PAN layer.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Materials
Published in
ACS APPLIED MATERIALS & INTERFACES
Volume
6
Issue
16
Pages
14087 - 14095 (9)
Citation
DONG, Y. ... et al, 2014. Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push-pull effects for moisture wicking. ACS Applied Materials & Interfaces, 6 (16), pp.14087-14095.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/