Final Manuscript.pdf (949.58 kB)
Download fileTailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push-pull effects for moisture wicking
journal contribution
posted on 2014-10-15, 07:49 authored by Yuliang Dong, Junhua Kong, Si Lei Phua, Chenyang Zhao, Noreen Thomas, Xuehong LuIn this article, liquid moisture transport behaviors of dual-layer electrospun nanofibrous mats are reported for the first time. The dual-layer mats consist of a thick layer of hydrophilic polyacrylonitrile (PAN) nanofibers with a thin layer of hydrophobic polystyrene (PS) nanofibers with and without interpenetrating nanopores, respectively. The mats are coated with polydopamine (PDOPA) to different extents to tailor the water wettability of the PS layer. It is found that with a large quantity of nanochannels, the porous PS nanofibers exhibit a stronger capillary effect than the solid PS nanofibers. The capillary motion in the porous PS nanofibers can be further enhanced by slight surface modification with PDOPA while retaining the large hydrophobicity difference between the two layers, inducing a strong push–pull effect to transport water from the PS to the PAN layer.
History
School
- Aeronautical, Automotive, Chemical and Materials Engineering
Department
- Materials
Published in
ACS APPLIED MATERIALS & INTERFACESVolume
6Issue
16Pages
14087 - 14095 (9)Citation
DONG, Y. ... et al, 2014. Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push-pull effects for moisture wicking. ACS Applied Materials & Interfaces, 6 (16), pp.14087-14095.Publisher
© American Chemical SocietyVersion
- AM (Accepted Manuscript)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/Publication date
2014Notes
This document is the Accepted Manuscript version of a Published Work that appeared in final form in [ACS Applied Materials & Interfaces], copyright © American Chemical Society after peer review and technical editing by the publisher. The final edited and published work can be found at: http://dx.doi.org/10.1021/am503417wISSN
1944-8244eISSN
1944-8252Publisher version
Language
- en