1-s2.0-S0167663617302727-main.pdf (3.55 MB)
Download file

Temperature-dependent crystal-plasticity model for magnesium: a bottom-up approach

Download (3.55 MB)
journal contribution
posted on 17.08.2017, 09:29 by Qiang Liu, Anish RoyAnish Roy, Vadim SilberschmidtVadim Silberschmidt
A crystal-plasticity model is developed to account for temperature-dependent mechanical behaviour of magnesium in this paper. The constitutive description of plastic deformation accounts for crystalline slip and twining as well as their interactions. The temperature dependence is incorporated into the constitutive equations for both slip and twin modes based on experimental observations. A bottom-up computational modelling framework is proposed to validate the developed constitutive model. First, the crystal-plasticity model is calibrated with experimental results for plane compression at micro-scale. At meso-scale, a three-dimensional representative element volume was adopted to represent the microstructure of polycrystalline magnesium. In the combination with the proposed constitutive theory, the effects of temperature on mechanical response and evolution of twins and texture in polycrystalline magnesium were predicted. Comprehensive experimental validations at meso-scale were performed to consolidate further the developed crystal-plasticity model incorporating temperature dependence in terms of stress-strain curves, the Hall-Petch relationship and texture evolution. This work provides a useful modelling tool for understanding temperature-dependent behaviour of magnesium, which could be used to improve the formability of this family of materials.

Funding

Funding from the Engineering and Physical Sciences Research Council (UK) through grant EP/K028316/1 and Department of Science and Technology (India), project MAST, is gratefully acknowledged.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Mechanics of Materials

Volume

113

Pages

44 - 56

Citation

LIU, Q., ROY, A. and SILBERSCHMIDT, V.V., 2017. Temperature-dependent crystal-plasticity model for magnesium: a bottom-up approach. Mechanics of Materials, 113, pp. 44-56.

Publisher

© The Authors. Published by Elsevier Ltd.

Version

VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Acceptance date

17/07/2017

Publication date

2017-07-21

Notes

This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

ISSN

0167-6636

Language

en