Testing the effectiveness of debiasing techniques to reduce overprecision in the elicitation of subjective continuous probability distributions
Formal expert elicitation is a widely used method for quantifying uncertain variables in decision and risk analysis. When estimating uncertain variables, experts and laypeople exhibit overprecision, meaning that the ranges of their estimates are too narrow. Overprecision, a form of overconfidence, is pervasive and hard to correct, thus posing a challenge to expert elicitation. Following the increasing interest toward improving judgments in Behavioral Operational Research (OR), and the limited evidence about the effectiveness of debiasing tools, the aim of our research is to test the effectiveness of commonly employed practices for debiasing overprecision. We conducted two experiments, testing a set of debiasing techniques when eliciting points of a cumulative distribution functions for general knowledge questions. The debiasing procedures included hypothetical bets, counterfactual argumentation, and automatic stretching to increase the ranges of subjects’ initial estimates. We find that two debiasing strategies that require further reasoning after initial estimates (hypothetical bets and counterfactuals) were not very effective for reducing overprecision, while the use of multipliers that increase the initial range of distributions, coupled with a re-elicitation of the distribution with the new range, provided more positive results. We provide some recommendations for expert elicitation in OR practice, based on our findings, and suggest avenues for further research into debiasing overprecision.
Funding
Center for Risk and Economic Analysis of Threats and Emergencies, University of Southern California
History
School
- Business and Economics
Department
- Business
Published in
European Journal of Operational ResearchVolume
304Issue
2Pages
661-675Publisher
Elsevier BVVersion
- VoR (Version of Record)
Rights holder
© The Author(s)Publisher statement
This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND). Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/Acceptance date
2022-04-07Publication date
2022-04-14Copyright date
2022ISSN
0377-2217Publisher version
Language
- en