Loughborough University

File(s) under permanent embargo

Reason: This item is currently closed access.

The consequences of acute cold exposure on protein oxidation and proteasome activity in short-tailed field voles, Microtus agrestis

journal contribution
posted on 2015-03-06, 13:38 authored by Colin Selman, Tilman Grune, Alexandra StolzingAlexandra Stolzing, Manuela Jakstadt, Jane S. McLaren, John R. Speakman
During cold exposure, animals upregulate their metabolism and food intake, potentially exposing them to elevated reactive oxygen species (ROS) production and oxidative damage. We investigated whether acute cold (7 ± 3°C) exposure (1, 10, or 100 h duration) affected protein oxidation and proteasome activity, when compared to warm controls (22 ± 3°C), in a small mammal model, the short-tailed field vole Microtus agrestis. Protein carbonyls and the chymotrypsin-like proteasome activity were measured in plasma, heart, liver, kidney, small intestine (duodenum), skeletal muscle (gastrocnemius), and brown adipose tissue (BAT). Trypsin-like and peptidyl-glutamyl-like proteasome activities were determined in BAT, liver, and skeletal muscle. Resting metabolic rate increased significantly with duration of cold exposure. In skeletal muscle (SM) and liver, protein carbonyl levels also increased with duration of cold exposure, but this pattern was not repeated in BAT where protein carbonyls were not significantly elevated. Chymotrpsin-like proteasome activity did not differ significantly in any tissue. However, trypsin-like activity in SM and peptidyl-glutamyl-like activity in both skeletal muscle and liver, were reduced during the early phase of cold exposure (1-10 h), correlated with the increased carbonyl levels in these tissues. In contrast there was no reduction in proteasome activity in BAT during the early phase of cold exposure and peptidyl-glutamyl-like activity was significantly increased, correlated with the lack of accumulation of protein carbonyls in this tissue. The upregulation of proteasome activity in BAT may protect this tissue from accumulated oxidative damage to proteins. This protection may be a very important factor in sustaining uncoupled respiration, which underpins nonshivering thermogenesis at cold temperatures. © 2002 Elsevier Science Inc.


This study was supported by a grant from the Biotechnology and Biological Sciences Research Council (SAGE-1 initiative) to J.R.S. and by the Deutsche Forschungsgemeinschaft and the Charite` Research Fonds to T.G.



  • Mechanical, Electrical and Manufacturing Engineering

Published in

Free Radical Biology and Medicine






259 - 265


SELMAN, C. ... et al, 2002. The consequences of acute cold exposure on protein oxidation and proteasome activity in short-tailed field voles, Microtus agrestis. Free Radical Biology and Medicine, 33 (2), pp. 259 - 265.


© Elsevier Ltd.


  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date



This article is closed access.




  • en