posted on 2017-03-03, 13:41authored byRamin RahmaniRamin Rahmani, Homer Rahnejat, Brian Fitzsimons, D. Dowson
Despite extensive research into alternative methods, the internal combustion engine is expected to remain as the primary source of vehicular propulsion for the foreseeable future. There are still significant opportunities for improving fuel efficiency, thus directly reducing the harmful emissions. Consequently, mitigation of thermal and frictional losses has gradually become a priority. The piston-cylinder system accounts for the major share of all the losses as well as emissions. Therefore, the need for an integrated approach, particularly of a predictive nature is essential. This paper addresses this issue, particularly the role of cylinder liner temperature, which affects both thermal and frictional performance of the piston-cylinder system. The study focuses on the top compression ring whose critical sealing function makes it a major source of frictional power loss and a critical component in guarding against further blow-by of harmful gasses. Such an integrated approach has not hitherto been reported in literature. The study shows that the cylinder liner temperature is critical in mitigating power loss as well as reducing Hydrocarbon (HC) and Nitrogen Oxide (NOx) emissions from the compression ring – cylinder liner conjunction. The results imply the existence of an optimum range for liner working temperature, independent of engine speed (at least in the studied cases) to minimise frictional losses. Combined with the study of NOx and HC emissions, the control of liner temperature can help to mitigate frictional power loss and reduce emissions.
Funding
The authors would like to express their gratitude to the Engineering
and Physical Sciences Research Council (EPSRC) for the
Fig. 19. Percentage average reduction in thermal losses in the power stroke for 10 C gradual increase in liner temperature.
R. Rahmani et al. / Applied Energy 191 (2017) 568–581 579
funding of the Encyclopaedic Program Grant (www.Encyclopaedic.
org), under which this research is carried out in collaboration with
a consortium of industry and academic institutions. Thanks are
particularly due to Aston Martin for financial and technical support
of this research.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
Applied Energy
Volume
191
Pages
568 - 581
Citation
RAHMANI, R. ... et al., 2017. The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction. Applied Energy, 191 (1 April 2017), pp. 568 - 581
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/
Acceptance date
2017-01-27
Publication date
2017-02-10
Copyright date
2017
Notes
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).