Loughborough University
Browse

The fundamental effects of in-cylinder evaporation of liquefied natural gas fuels in engines

Download (2.38 MB)
journal contribution
posted on 2020-07-29, 12:55 authored by Josh Finneran, Colin Garner, Francois Nadal
Liquefied natural gas is emerging as viable and potentially sustainable transportation fuel with intrinsic economic and environmental benefits. Liquefied natural gas possesses thermomechanical exergy amounting to ∼1 MJ kg-1 which is currently wasted on liquefied natural gas vehicles, while it could be used to produce useful work. The present investigation proposes an indirect means of obtaining useful work from liquefied natural gas through charge cooling and also demonstrates additional benefits in terms of NOx emissions and power density. A thermodynamic engine model was used to quantify the performance benefits of such a strategy for a homogeneous-charge, spark-ignited, stoichiometric natural gas engine. Four fuelling strategies were compared in terms of fuel consumption, mean effective pressure and NOx emissions. Compared to the conventional port-injected natural gas engine (where gaseous fuel is injected), it was found that directly injecting the liquid phase fuel into the cylinder near the start of the compression stroke resulted in approximately -8.9% brake specific fuel consumption, +18.5% brake mean effective pressure and -51% brake specific NOx depending on the operating point. Port-injection of the fuel in the liquid phase carried similar benefits, while direct injection of the fuel in the gaseous phase resulted in minor efficiency penalties (∼+1.3% brake specific fuel consumption). This work highlights the future potential of liquefied natural gas vehicles to achieve high specific power, high efficiency and ultra-low emissions (such as NOx) by tailoring the fuel system to fully exploit the cryogenic properties of the fuel.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering

Volume

235

Issue

1

Pages

211-230

Publisher

SAGE Publications

Version

  • VoR (Version of Record)

Rights holder

© IMechE 2020

Publisher statement

This is an Open Access Article. It is published by Sage under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

Acceptance date

2020-06-11

Publication date

2020-07-28

Copyright date

2021

ISSN

0954-4070

eISSN

2041-2991

Language

  • en

Depositor

Mr Josh Finneran Deposit date: 28 July 2020

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC