These notes will give an introduction to the theory of K3 surfaces. We begin with some general results on K3 surfaces, including the construction of their moduli space and some of its properties. We then move on to focus on the theory of polarized K3 surfaces, studying their moduli, degenerations and the compactification problem. This theory is then further enhanced to a discussion of lattice polarized K3 surfaces, which provide a rich source of explicit examples, including a large class of lattice polarizations coming from elliptic fibrations. Finally, we conclude by discussing the ample and Kahler cones of K3 surfaces, and give some of their applications.
Funding
A. Harder was supported by an NSERC PGS D scholarship and a University of Alberta Doctoral Recruitment Scholarship.
A. Thompson was supported by a Fields-Ontario-PIMS postdoctoral fellowship with funding
provided by NSERC, the Ontario Ministry of Training, Colleges and Universities, and an Alberta Advanced Education and Technology Grant.
History
School
Science
Department
Mathematical Sciences
Published in
Fields Institute Monographs
Volume
34
Pages
3 - 43
Citation
HARDER, A. and THOMPSON, A., 2015. The geometry and moduli of K3 surfaces. IN: Laza, R., Schutt, M. and Yui, N. (eds.) Calabi-Yau Varieties: Arithmetic, Geometry
and Physics. Lecture Notes on Concentrated Graduate
Courses. New York: Springer, pp. 3-43.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2015
Notes
This is a pre-copyedited version
of a contribution published in Laza, R., Schutt, M. and Yui, N. (eds.) Calabi-Yau Varieties: Arithmetic, Geometry and Physics. Lecture Notes on Concentrated Graduate published by Springer. The definitive authenticated version is available online via https://doi.org/10.1007/978-1-4939-2830-9_1