posted on 2018-01-04, 14:58authored byEirini Mantesi, Christina Hopfe, Malcolm CookMalcolm Cook, Jacqui Glass, Paul Strachan
Enhanced fabric performance is fundamental to reduce the energy consumption in buildings. Research has shown that the thermal mass of the fabric can be used as a passive design strategy to reduce energy use for space conditioning. Concrete is a high density material, therefore said to have high thermal mass. Insulating concrete formwork (ICF) consists of cast in-situ concrete poured between two layers of insulation. ICF is generally perceived as a thermally lightweight construction, although previous field studies indicated that ICF shows evidence of heat storage effects. There is a need for accurate performance prediction when designing new buildings. This is challenging in particular when using advanced or new methods (such as ICF), that are not yet well researched. Building Performance Simulation (BPS) is often used to predict the thermal performance of buildings. Large discrepancies can occur in the simulation predictions provided by different BPS tools. In many cases assumptions embedded within the tools are outside of the modeller's control. At other times, users are required to make decisions on whether to rely on the default settings or to specify the input values and algorithms to be used in the simulation. This paper investigates the “modelling gap”, the impact of default settings and the implications of the various calculation algorithms on the results divergence in thermal mass simulation using different tools. ICF is compared with low and high thermal mass constructions. The results indicated that the modelling uncertainties accounted for up to 26% of the variation in the simulation predictions.
Funding
The authors gratefully acknowledge the Engineering and Physical Sciences Research Council and the Centre for Innovative and Collaborative Construction Engineering at Loughborough University for the provision of a grant (number EPG037272) to undertake this research project in collaboration with Aggregate Industries UK Ltd.
History
School
Architecture, Building and Civil Engineering
Published in
Building and Environment
Volume
131
Pages
74-98
Citation
MANTESI, E. ... et al, 2018. The modelling gap: quantifying the discrepancy in the representation of thermal mass in building simulation. Building and Environment, 131, pp. 74-98.
Publisher
Elsevier
Version
VoR (Version of Record)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/
Acceptance date
2017-12-15
Publication date
2017-12-20
Copyright date
2018
Notes
This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/