<p dir="ltr">Wheelchair sprint performance varies by sports classification. Yet, it is unclear how spatio-temporal, kinetic and kinetic asymmetries of wheelchair sprinting differ among wheelchair rugby players of different performance standard. The study purpose was to examine the associations between 30s sprint performances and spatio-temporal, kinetic and kinetic asymmetries on a dual-roller ergometer in elite and sub-elite wheelchair rugby players (n=20). Kinetic differences between groups were investigated using statistical parametric mapping. Peak velocities were associated with the acceleration phase and higher peak power (r=0.62, P=0.003) and lower push times (r=-0.50, P=0.020). Greater distance travelled during the acceleration phase were correlated with lower asymmetries in peak power (r=-0.58, P=0.005). Overall, both peak velocity and total distance covered during the entire sprint was correlated with lower push times (r=-0.61, P=0.003 and r=-0.62, P=0.003) but greater peak power (r=-0.61, P=0.003 and r=-0.62, P=0.003). Elite players had lower power asymmetries between 1 to 15% and 95 to 100% of the push phase during the acceleration phase, accompanied by a lower initial contact asymmetry (P=0.011). While power is an essential feature of sprinting, our findings show that how it is applied, in terms of asymmetry and coordination might differentiate the performance in wheelchair rugby.</p>
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/),which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.